RegulonDB RegulonDB 10.8: Gene Form
   

motB gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

cheA motB motA flhC CpxR anti-anti-terminator anti-terminator terminator motAp motAp TSS_2231 TSS_2231 TSS_2230 TSS_2230 TSS_2229 TSS_2229 TSS_2228 TSS_2228 cheWp5 cheWp5

Gene      
Name: motB    Texpresso search in the literature
Synonym(s): ECK1890, EG10602, b1889, flaJ
Genome position(nucleotides): 1975329 <-- 1976255 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
53.18
External database links:  
ASAP:
ABE-0006297
CGSC:
490
ECHOBASE:
EB0597
OU-MICROARRAY:
b1889
PortEco:
motB
STRING:
511145.b1889
COLOMBOS: motB


Product      
Name: motility protein B
Synonym(s): FlaJ, MotB
Sequence: Get amino acid sequence Fasta Format
Cellular location: inner membrane
Molecular weight: 34.186
Isoelectric point: 9.531
Motif(s):
 
Type Positions Sequence
164 -> 164 G
148 -> 268 LRIQIIDSQNRPMFRTGSADVEPYMRDILRAIAPVLNGIPNRISLSGHTDDFPYASGEKGYSNWELSADRANASRRELMVGGLDSGKVLRVVGMAATMRLSDRGPDDAVNRRISLLVLNKQ
160 -> 257 MFRTGSADVEPYMRDILRAIAPVLNGIPNRISLSGHTDDFPYASGEKGYSNWELSADRANASRRELMVGGLDSGKVLRVVGMAATMRLSDRGPDDAVN
205 -> 205 E
31 -> 31 A

 

Classification:
Multifun Terms (GenProtEC)  
  5 - cell processes --> 5.3 - motility, chemotaxis, energytaxis (aerotaxis, redoxtaxis etc)
  6 - cell structure --> 6.1 - membrane
  6 - cell structure --> 6.4 - flagella
Gene Ontology Terms (GO)  
cellular_component GO:0016020 - membrane
GO:0005886 - plasma membrane
GO:0005887 - integral component of plasma membrane
GO:0016021 - integral component of membrane
molecular_function GO:0015252 - proton channel activity
GO:0005515 - protein binding
GO:0042834 - peptidoglycan binding
biological_process GO:0006935 - chemotaxis
GO:0071973 - bacterial-type flagellum-dependent cell motility
GO:1902600 - proton transmembrane transport
GO:0097588 - archaeal or bacterial-type flagellum-dependent cell motility
Note(s): Note(s): ...[more].
Evidence: [IMP] Inferred from mutant phenotype
Reference(s): [1] Asai Y., et al., 2003
[2] Berry RM. 2000
[3] Blair DF., et al., 1991
[4] Block SM., et al., 1984
[5] Boyd A., et al., 1982
[6] Braun TF., et al., 2001
[7] De Mot R., et al., 1994
[8] Gosink KK., et al., 2000
[9] Ishida T., et al., 2019
[10] Kojima S., et al., 2001
[11] Minamino T., et al., 2018
[12] Onoue Y., et al., 2018
[13] Sowa Y., et al., 2014
[14] Van Way SM., et al., 2000
External database links:  
DIP:
DIP-47996N
ECOCYC:
MOTB-FLAGELLAR-MOTOR-STATOR-PROTEIN
ECOLIWIKI:
b1889
INTERPRO:
IPR036737
INTERPRO:
IPR025713
INTERPRO:
IPR006665
MODBASE:
P0AF06
PFAM:
PF00691
PFAM:
PF13677
PRIDE:
P0AF06
PRODB:
PRO_000023275
PROSITE:
PS51123
REFSEQ:
NP_416403
SMR:
P0AF06
UNIPROT:
P0AF06


Operon      
Name: motAB-cheAW         
Operon arrangement:
Transcription unit        Promoter
motAB-cheAW


Transcriptional Regulation      
Display Regulation             
Repressed by: CpxR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter cheWp5 1973462 reverse Similarity to the consensus
Read more >
[ICWHO] [15]
  promoter TSS_2228 1973726 reverse nd [RS-EPT-CBR] [16]
  promoter TSS_2229 1975808 reverse nd [RS-EPT-CBR] [16]
  promoter TSS_2230 1976720 reverse nd [RS-EPT-CBR] [16]
  promoter TSS_2231 1977300 reverse nd [RS-EPT-CBR] [16]


Evidence    

 [ICWHO] Inferred computationally without human oversight

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Asai Y., Yakushi T., Kawagishi I., Homma M., 2003, Ion-coupling determinants of Na+-driven and H+-driven flagellar motors., J Mol Biol 327(2):453-63

 [2] Berry RM., 2000, Theories of rotary motors., Philos Trans R Soc Lond B Biol Sci 355(1396):503-9

 [3] Blair DF., Kim DY., Berg HC., 1991, Mutant MotB proteins in Escherichia coli., J Bacteriol 173(13):4049-55

 [4] Block SM., Berg HC., 1984, Successive incorporation of force-generating units in the bacterial rotary motor., Nature 309(5967):470-2

 [5] Boyd A., Mandel G., Simon MI., 1982, Integral membrane proteins required for bacterial motility and chemotaxis., Symp Soc Exp Biol 35:123-37

 [6] Braun TF., Blair DF., 2001, Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex., Biochemistry 40(43):13051-9

 [7] De Mot R., Vanderleyden J., 1994, The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan., Mol Microbiol 12(2):333-4

 [8] Gosink KK., Hase CC., 2000, Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli., J Bacteriol 182(15):4234-40

 [9] Ishida T., Ito R., Clark J., Matzke NJ., Sowa Y., Baker MAB., 2019, Sodium-powered stators of the bacterial flagellar motor can generate torque in the presence of phenamil with mutations near the peptidoglycan-binding region., Mol Microbiol 111(6):1689-1699

 [10] Kojima S., Blair DF., 2001, Conformational change in the stator of the bacterial flagellar motor., Biochemistry 40(43):13041-50

 [11] Minamino T., Terahara N., Kojima S., Namba K., 2018, Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment., Mol Microbiol 109(6):723-734

 [12] Onoue Y., Takekawa N., Nishikino T., Kojima S., Homma M., 2018, The role of conserved charged residues in the bidirectional rotation of the bacterial flagellar motor., Microbiologyopen 7(4):e00587

 [13] Sowa Y., Homma M., Ishijima A., Berry RM., 2014, Hybrid-fuel bacterial flagellar motors in Escherichia coli., Proc Natl Acad Sci U S A 111(9):3436-41

 [14] Van Way SM., Hosking ER., Braun TF., Manson MD., 2000, Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene., J Mol Biol 297(1):7-24

 [15] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78

 [16] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB