RegulonDB RegulonDB 10.9: Gene Form
   

sodA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

rhaT kdgT sodA rhaR RhaS SoxR IHF ArcA ArcA ArcA ArcA IHF Fur Fur ArcA FNR Fur ArcA Rob MarA Fur SoxS IHF IHF CRP RhaS RhaS terminator anti-terminator anti-anti-terminator terminator sodAp sodAp rhaTp rhaTp

Gene      
Name: sodA    Texpresso search in the literature
Synonym(s): ECK3901, EG10953, b3908
Genome position(nucleotides): 4100810 --> 4101430 Genome Browser
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
53.3
External database links:  
ASAP:
ABE-0012761
CGSC:
17593
ECHOBASE:
EB0946
ECOLIHUB:
sodA
MIM:
612634
OU-MICROARRAY:
b3908
STRING:
511145.b3908
COLOMBOS: sodA


Product      
Name: superoxide dismutase (Mn)
Synonym(s): MnSOD, SodA
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 23.097
Isoelectric point: 6.971
Motif(s):
 
Type Positions Sequence
96 -> 201 QGDLKAAIERDFGSVDNFKAEFEKAAASRFGSGWAWLVLKGDKLAVVSTANQDSPLMGEAISGASGFPIMGLDVWEHAYYLKFQNRRPDYIKEFWNVVNWDEAAAR
165 -> 165 M
81 -> 82 NH
2 -> 89 SYTLPSLPYAYDALEPHFDKQTMEIHHTKHHQTYVNNANAALESLPEFANLPVEELITKLDQLPADKKTVLRNNAGGHANHSLFWKGL

 

Classification:
Multifun Terms (GenProtEC)  
  5 - cell processes --> 5.6 - protection --> 5.6.2 - detoxification
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
molecular_function GO:0003677 - DNA binding
GO:0046872 - metal ion binding
GO:0016491 - oxidoreductase activity
GO:0016209 - antioxidant activity
GO:0004784 - superoxide dismutase activity
GO:0030145 - manganese ion binding
GO:0042803 - protein homodimerization activity
biological_process GO:0006979 - response to oxidative stress
GO:0009408 - response to heat
GO:0006801 - superoxide metabolic process
GO:0019430 - removal of superoxide radicals
GO:0055114 - oxidation-reduction process
GO:0010447 - response to acidic pH
GO:0071291 - cellular response to selenium ion
Note(s): Note(s): ...[more].
Reference(s): [1] Baez A., et al., 2013
[2] Bertrand R., et al., 2012
[3] Chaithawiwat K., et al., 2016
[4] Clares MP., et al., 2015
[5] Gardner PR., et al., 1987
[6] Gomez-Sagasti MT., et al., 2014
[7] Gravina F., et al., 2017
[8] Kahrstrom CT. 2012
[9] Lin CN., et al., 2010
[10] Privalle CT., et al., 1989
[11] Privalle CT., et al., 1992
[12] Privalle CT., et al., 1990
[13] Privalle CT., et al., 1988
[14] Rodriguez-Moya M., et al., 2015
[15] Sharma A., et al., 2013
[16] Smolik AC., et al., 2014
[17] Sun H., et al., 2016
[18] Tetteh AY., et al., 2014
[19] Wang JH., et al., 2014
[20] Yost AD., et al., 2015
External database links:  
ECOCYC:
SUPEROX-DISMUTMN-MONOMER
ECOLIWIKI:
b3908
INTERPRO:
IPR019833
INTERPRO:
IPR019832
INTERPRO:
IPR001189
INTERPRO:
IPR036314
INTERPRO:
IPR036324
INTERPRO:
IPR019831
MODBASE:
P00448
PDB:
1I0H
PDB:
1IX9
PDB:
1IXB
PDB:
1I08
PDB:
1EN6
PDB:
1EN5
PDB:
1EN4
PDB:
1D5N
PDB:
1ZLZ
PDB:
3K9S
PDB:
1MMM
PDB:
1VEW
PDB:
3OT7
PFAM:
PF00081
PFAM:
PF02777
PRIDE:
P00448
PRINTS:
PR01703
PRODB:
PRO_000023964
PROSITE:
PS00088
REFSEQ:
NP_418344
SMR:
P00448
UNIPROT:
P00448


Operon      
Name: sodA         
Operon arrangement:
Transcription unit        Promoter
sodA


Transcriptional Regulation      
Display Regulation             
Activated by: SoxR, CRP, MarA, Rob, SoxS
Repressed by: FNR, Fur, IHF, ArcA


RNA cis-regulatory element    
Attenuation: Translational


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Baez A., Shiloach J., 2013, Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase., Microb Cell Fact 12:23

 [2] Bertrand R., Danielson D., Gong V., Olynik B., Eze MO., 2012, Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator., Med Hypotheses 78(1):130-3

 [3] Chaithawiwat K., Vangnai A., McEvoy JM., Pruess B., Krajangpan S., Khan E., 2016, Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron., Sci Total Environ 565:857-862

 [4] Clares MP., Serena C., Blasco S., Nebot A., del Castillo L., Soriano C., Domenech A., Sanchez-Sanchez AV., Soler-Calero L., Mullor JL., Garcia-Espana A., Garcia-Espana E., 2015, Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity., J Inorg Biochem 143:1-8

 [5] Gardner PR., Fridovich I., 1987, Controls on the biosynthesis of the manganese-containing superoxide dismutase of Escherichia coli. Effects of thiols., J Biol Chem 262(36):17591-5

 [6] Gomez-Sagasti MT., Becerril JM., Martin I., Epelde L., Garbisu C., 2014, cDNA microarray assessment of early gene expression profiles in Escherichia coli cells exposed to a mixture of heavy metals., Cell Biol Toxicol 30(4):207-32

 [7] Gravina F., Dobrzanski T., Olchanheski LR., Galvao CW., Reche PM., Pileggi SA., Azevedo RA., Sadowsky MJ., Pileggi M., 2017, Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone® (paraquat) herbicide., Ecotoxicol Environ Saf 139:89-96

 [8] Kahrstrom CT., 2012, Cellular microbiology: Ironing out Hfq regulation., Nat Rev Microbiol 10(5):310-1

 [9] Lin CN., Syu WJ., Sun WS., Chen JW., Chen TH., Don MJ., Wang SH., 2010, A role of ygfZ in the Escherichia coli response to plumbagin challenge., J Biomed Sci 17:84

 [10] Privalle CT., Beyer WF., Fridovich I., 1989, Anaerobic induction of ProMn-superoxide dismutase in Escherichia coli., J Biol Chem 264(5):2758-63

 [11] Privalle CT., Fridovich I., 1992, Transcriptional and maturational effects of manganese and iron on the biosynthesis of manganese-superoxide dismutase in Escherichia coli., J Biol Chem 267(13):9140-5

 [12] Privalle CT., Fridovich I., 1990, Anaerobic biosynthesis of the manganese-containing superoxide dismutase in Escherichia coli. Effects of diazenedicarboxylic acid bis(N,N'-dimethylamide) (diamide)., J Biol Chem 265(35):21966-70

 [13] Privalle CT., Fridovich I., 1988, Inductions of superoxide dismutases in Escherichia coli under anaerobic conditions. Accumulation of an inactive form of the manganese enzyme., J Biol Chem 263(9):4274-9

 [14] Rodriguez-Moya M., Gonzalez R., 2015, Proteomic analysis of the response of Escherichia coli to short-chain fatty acids., J Proteomics 122:86-99

 [15] Sharma A., Gaidamakova EK., Matrosova VY., Bennett B., Daly MJ., Hoffman BM., 2013, Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods., Proc Natl Acad Sci U S A 110(15):5945-50

 [16] Smolik AC., Bengez-Pudja L., Cheng I., Mascotti DP., 2014, Characterization of E. coli manganese superoxide dismutase binding to RNA and DNA., Biochim Biophys Acta 1844(12):2251-6

 [17] Sun H., Li G., An T., Zhao H., Wong PK., 2016, Unveiling the photoelectrocatalytic inactivation mechanism of Escherichia coli: Convincing evidence from responses of parent and anti-oxidation single gene knockout mutants., Water Res 88:135-143

 [18] Tetteh AY., Sun KH., Hung CY., Kittur FS., Ibeanu GC., Williams D., Xie J., 2014, Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction., Int J Microbiol 394835

 [19] Wang JH., Singh R., Benoit M., Keyhan M., Sylvester M., Hsieh M., Thathireddy A., Hsieh YJ., Matin AC., 2014, Sigma S-dependent antioxidant defense protects stationary-phase Escherichia coli against the bactericidal antibiotic gentamicin., Antimicrob Agents Chemother 58(10):5964-75

 [20] Yost AD., Joshi SG., 2015, Atmospheric Nonthermal Plasma-Treated PBS Inactivates Escherichia coli by Oxidative DNA Damage., PLoS One 10(10):e0139903


RegulonDB