RegulonDB RegulonDB 10.9: Gene Form
   

mobA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

mobA mobB yihD rrfA CpxR mobAp2 mobAp2 yihDp yihDp TSS_4525 (cluster) TSS_4525 (cluster) mobAp1 mobAp1 TSS_4524 TSS_4524

Gene      
Name: mobA    Texpresso search in the literature
Synonym(s): ECK3849, EG11829, b3857, chlB, mob, narB
Genome position(nucleotides): 4041415 <-- 4041999 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
50.09
External database links:  
ASAP:
ABE-0012593
CGSC:
921
ECHOBASE:
EB1776
ECOLIHUB:
mobA
OU-MICROARRAY:
b3857
STRING:
511145.b3857
COLOMBOS: mobA


Shine dalgarno      
Sequence: cccacaataaAAGAGGcgatatcGGT


Product      
Name: molybdenum cofactor guanylyltransferase
Synonym(s): ChlB, Mob, MobA, NarB, molybdopterin-guanine dinucleotide, protein Ar, protein FA
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 21.643
Isoelectric point: 6.3
Motif(s):
 
Type Positions Sequence
12 -> 14 LAG
9 -> 159 GVVLAGGKARRMGGVDKGLLELNGKPLWQHVADALMTQLSHVVVNANRHQEIYQASGLKVIEDSLADYPGPLAGMLSVMQQEAGEWFLFCPCDTPYIPPDLAARLNHQRKDAPVVWVHDGERDHPTIALVNRAIEPLLLEYLQAGERRVMV
15 -> 15 G
19 -> 19 R
82 -> 82 G

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.5 - biosynthesis of building blocks --> 1.5.3 - cofactors, small molecule carriers --> 1.5.3.4 - molybdenum
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
molecular_function GO:0003824 - catalytic activity
GO:0005515 - protein binding
GO:0016740 - transferase activity
GO:0046872 - metal ion binding
GO:0000166 - nucleotide binding
GO:0005525 - GTP binding
GO:0000287 - magnesium ion binding
GO:0070568 - guanylyltransferase activity
GO:0061603 - molybdenum cofactor guanylyltransferase activity
biological_process GO:0006777 - Mo-molybdopterin cofactor biosynthetic process
GO:0019720 - Mo-molybdopterin cofactor metabolic process
GO:1902758 - bis(molybdopterin guanine dinucleotide)molybdenum biosynthetic process
Note(s): Note(s): ...[more].
Reference(s): [1] Boxer DH., et al., 1987
[2] Campbell AM., et al., 1985
[3] Casse F. 1970
[4] Giordano G., et al., 1990
[5] Giordano G., et al., 1980
[6] Giordano G., et al., 1984
[7] Iuchi S., et al., 1987
[8] Lambdren PR., et al., 1976
[9] MacGregor CH., et al., 1973
[10] MacGregor CH., et al., 1971
[11] Miller JB., et al., 1983
[12] Reiss J., et al., 1987
[13] Rothery RA., et al., 1995
[14] Rothery RA., et al., 1998
[15] Santini CL., et al., 1992
[16] Saracino L., et al., 1986
[17] Silvestro A., et al., 1986
[18] Takagi M., et al., 1981
[19] Venables WA. 1972
External database links:  
DIP:
DIP-10233N
ECOCYC:
EG11829-MONOMER
ECOLIWIKI:
b3857
INTERPRO:
IPR029044
INTERPRO:
IPR013482
INTERPRO:
IPR025877
MODBASE:
P32173
PDB:
1HJJ
PDB:
1HJL
PDB:
1E5K
PDB:
1FR9
PDB:
1FRW
PDB:
1H4C
PDB:
1H4D
PDB:
1H4E
PFAM:
PF12804
PRIDE:
P32173
PRODB:
PRO_000023265
REFSEQ:
NP_418294
SMR:
P32173
UNIPROT:
P32173


Operon      
Name: mobAB         
Operon arrangement:
Transcription unit        Promoter
mobAB
mobAB


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_4524 4041041 reverse nd [RS-EPT-CBR] [20]
  promoter TSS_4525 (cluster) 4042047 forward For this promoter, there
Read more >
[RS-EPT-CBR] [20]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Boxer DH., Low DC., Pommier J., Giordano G., 1987, Involvement of a low-molecular-weight substance in in vitro activation of the molybdoenzyme respiratory nitrate reductase from a chlB mutant of Escherichia coli., J Bacteriol 169(10):4678-85

 [2] Campbell AM., del Campillo-Campbell A., Villaret DB., 1985, Molybdate reduction by Escherichia coli K-12 and its chl mutants., Proc Natl Acad Sci U S A 82(1):227-31

 [3] Casse F., 1970, Mapping of the gene chl-B controlling membran bound nitrate reductase and formic hydrogen-lyase activities in Escherichia coli K 12., Biochem Biophys Res Commun 39(3):429-36

 [4] Giordano G., Boxer DH., Pommier J., 1990, Molybdenum cofactor requirement for in vitro activation of apo-molybdoenzymes of Escherichia coli., Mol Microbiol 4(4):645-50

 [5] Giordano G., Grillet L., Pommier J., Terriere C., Haddock BA., Azoulay E., 1980, Precursor forms of the subunits of nitrate reductase in chlA and chlB mutants of Escherichia coli K12., Eur J Biochem 105(2):297-306

 [6] Giordano G., Violet M., Medani CL., Pommier J., 1984, A common pathway for the activation of several molybdoenzymes in Escherichia coli K12., Biochim Biophys Acta 798(2):216-25

 [7] Iuchi S., Lin EC., 1987, Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli., J Bacteriol 169(8):3720-5

 [8] Lambdren PR., Guest JR., 1976, A novel method for isolating chlorate-resistant mutants of Escherichia coli K12 by anaerobic selection on a lactate plus fumarate medium., J Gen Microbiol 93(1):173-6

 [9] MacGregor CH., Schnaitman CA., 1973, Reconstitution of nitrate reductase activity and formation of membrane particles from cytoplasmic extracts of chlorate-resistant mutants of Escherichia coli., J Bacteriol 114(3):1164-76

 [10] MacGregor CH., Schnaitman CA., 1971, Alterations in the cytoplasmic membrane proteins of various chlorate-resistant mutants of Escherichia coli., J Bacteriol 108(1):564-70

 [11] Miller JB., Amy NK., 1983, Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli., J Bacteriol 155(2):793-801

 [12] Reiss J., Kleinhofs A., Klingmuller W., 1987, Cloning of seven differently complementing DNA fragments with chl functions from Escherichia coli K12., Mol Gen Genet 206(2):352-5

 [13] Rothery RA., Grant JL., Johnson JL., Rajagopalan KV., Weiner JH., 1995, Association of molybdopterin guanine dinucleotide with Escherichia coli dimethyl sulfoxide reductase: effect of tungstate and a mob mutation., J Bacteriol 177(8):2057-63

 [14] Rothery RA., Magalon A., Giordano G., Guigliarelli B., Blasco F., Weiner JH., 1998, The molybdenum cofactor of Escherichia coli nitrate reductase A (NarGHI). Effect of a mobAB mutation and interactions with [Fe-S] clusters., J Biol Chem 273(13):7462-9

 [15] Santini CL., Iobbi-Nivol C., Romane C., Boxer DH., Giordano G., 1992, Molybdoenzyme biosynthesis in Escherichia coli: in vitro activation of purified nitrate reductase from a chlB mutant., J Bacteriol 174(24):7934-40

 [16] Saracino L., Violet M., Boxer DH., Giordano G., 1986, Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor., Eur J Biochem 158(3):483-90

 [17] Silvestro A., Pommier J., Giordano G., 1986, Molybdenum cofactor: a compound in the in vitro activation of both nitrate reductase and trimethylamine-N-oxide reductase activities in Escherichia coli K12., Biochim Biophys Acta 872(3):243-52

 [18] Takagi M., Tsuchiya T., Ishimoto M., 1981, Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli., J Bacteriol 148(3):762-8

 [19] Venables WA., 1972, Genetic studies with nitrate reductase-less mutants of Escherichia coli. I. Fine structure analysis of the narA, narB and narE loci., Mol Gen Genet 114(3):223-31

 [20] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB