RegulonDB RegulonDB 11.0: Gene Form
   

nfsB gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

ybdG nfsB ybdF SoxS Rob MarA TSS_722 TSS_722 nfsBp nfsBp TSS_720 TSS_720

Gene      
Name: nfsB    Texpresso search in the literature
Synonym(s): ECK0570, EG50005, b0578, dprA, nfnB, ntr
Genome position(nucleotides): 604771 <-- 605424
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
51.53
External database links:  
ASAP:
ABE-0001981
ECHOBASE:
EB4146
ECOLIHUB:
nfsB
OU-MICROARRAY:
b0578
STRING:
511145.b0578
COLOMBOS: nfsB


Product      
Name: NAD(P)H-dependent nitroreductase NfsB
Synonym(s): DprA, NfnB, NfsB, Ntr
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol,membrane
Molecular weight: 23.905
Isoelectric point: 6.16
Motif(s):
 
Type Positions Sequence Comment
5 -> 5 S UniProt: In Ref. 9; AA sequence..
8 -> 193 LKRHSTKAFDASKKLTPEQAEQIKTLLQYSPSSTNSQPWHFIVASTEEGKARVAKSAAGNYVFNERKMLDASHVVVFCAKTAMDDVWLKLVVDQEDADGRFATPEAKAANDKGRKFFADMHRKDLHDDAEWMAKQVYLNVGNFLLGVAALGLDAVPIEGFDAAILDAEFGLKEKGYTSLVVVPVGH
10 -> 14 RHSTK UniProt: FMN.
19 -> 19 S UniProt: In Ref. 9; AA sequence..
21 -> 21 K UniProt: In Ref. 7; AA sequence..

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.7 - central intermediary metabolism --> 1.7.1 - unassigned reversible reactions
  5 - cell processes --> 5.6 - protection --> 5.6.4 - drug resistance/sensitivity
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
GO:0016020 - membrane
molecular_function GO:0016491 - oxidoreductase activity
GO:0003955 - NAD(P)H dehydrogenase (quinone) activity
GO:0004155 - 6,7-dihydropteridine reductase activity
GO:0010181 - FMN binding
GO:0042802 - identical protein binding
GO:0042803 - protein homodimerization activity
GO:0018545 - NAD(P)H nitroreductase activity
biological_process GO:0046256 - 2,4,6-trinitrotoluene catabolic process
Note(s): Note(s): ...[more].
Reference(s): [1] Anderson SD., et al., 2019
[2] Bai J., et al., 2015
[3] Ball P., et al., 2019
[4] Breeze AS., et al., 1983
[5] Grove JI., et al., 2003
[6] Hameed P S., et al., 2018
[7] Jaberipour M., et al., 2010
[8] Jarrom D., et al., 2009
[9] Kienle DF., et al., 2018
[10] Lai PJ., et al., 2020
[11] Le VVH., et al., 2020
[12] Li Z., et al., 2013
[13] Merkley ED., et al., 2010
[14] Sastry SS., et al., 1984
[15] Shen L., et al., 2014
[16] Singh SK., et al., 2018
[17] Steenhuis M., et al., 2021
[18] Stevens M., et al., 2020
[19] Valle A., et al., 2012
[20] Williams EM., et al., 2019
[21] de la Calle ME., et al., 2019
[22] de la Calle ME., et al., 2019
External database links:  
ALPHAFOLD:
P38489
DIP:
DIP-10330N
ECOCYC:
DIHYDROPTERIREDUCT-MONOMER
ECOLIWIKI:
b0578
INTERPRO:
IPR029479
INTERPRO:
IPR033878
INTERPRO:
IPR000415
MODBASE:
P38489
PDB:
1ICR
PDB:
1DS7
PDB:
1ICV
PDB:
1IDT
PDB:
1OO5
PDB:
1OO6
PDB:
1OON
PDB:
1OOQ
PDB:
1YKI
PDB:
1YLR
PDB:
1YLU
PDB:
3X21
PDB:
3X22
PDB:
1ICU
PFAM:
PF00881
PRIDE:
P38489
PRODB:
PRO_000023373
REFSEQ:
NP_415110
SMR:
P38489
UNIPROT:
P38489


Operon      
Name: nfsB         
Operon arrangement:
Transcription unit        Promoter
nfsB


Transcriptional Regulation      
Display Regulation             
Activated by: MarA, SoxS, Rob


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_720 604684 reverse nd [RS-EPT-CBR] [23]
  promoter TSS_722 605482 reverse nd [RS-EPT-CBR] [23]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Anderson SD., Hobbs RJ., Gwenin VV., Ball P., Bennie LA., Coulter JA., Gwenin CD., 2019, Cell-Penetrating Peptides as a Tool for the Cellular Uptake of a Genetically Modified Nitroreductase for use in Directed Enzyme Prodrug Therapy., J Funct Biomater 10(4)

 [2] Bai J., Zhou Y., Chen Q., Yang Q., Yang J., 2015, Altering the regioselectivity of a nitroreductase in the synthesis of arylhydroxylamines by structure-based engineering., Chembiochem 16(8):1219-25

 [3] Ball P., Thompson E., Anderson S., Gwenin V., Gwenin C., 2019, Time dependent HPLC analysis of the product ratio of enzymatically reduced prodrug CB1954 by a modified and immobilised nitroreductase., Eur J Pharm Sci 127:217-224

 [4] Breeze AS., Obaseiki-Ebor EE., 1983, Mutations to nitrofurantoin and nitrofurazone resistance in Escherichia coli K12., J Gen Microbiol 129(1):99-103

 [5] Grove JI., Lovering AL., Guise C., Race PR., Wrighton CJ., White SA., Hyde EI., Searle PF., 2003, Generation of Escherichia coli nitroreductase mutants conferring improved cell sensitization to the prodrug CB1954., Cancer Res 63(17):5532-7

 [6] Hameed P S., Bharatham N., Katagihallimath N., Sharma S., Nandishaiah R., Shanbhag AP., Thomas T., Narjari R., Sarma M., Bhowmik P., Amar P., Ravishankar R., Jayaraman R., Muthan K., Subbiah R., Ramachandran V., Balasubramanian V., Datta S., 2018, Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: Mechanism of action and Efficacy., Sci Rep 8(1):7263

 [7] Jaberipour M., Vass SO., Guise CP., Grove JI., Knox RJ., Hu L., Hyde EI., Searle PF., 2010, Testing double mutants of the enzyme nitroreductase for enhanced cell sensitisation to prodrugs: effects of combining beneficial single mutations., Biochem Pharmacol 79(2):102-11

 [8] Jarrom D., Jaberipour M., Guise CP., Daff S., White SA., Searle PF., Hyde EI., 2009, Steady-state and stopped-flow kinetic studies of three Escherichia coli NfsB mutants with enhanced activity for the prodrug CB1954., Biochemistry 48(32):7665-72

 [9] Kienle DF., Falatach RM., Kaar JL., Schwartz DK., 2018, Correlating Structural and Functional Heterogeneity of Immobilized Enzymes., ACS Nano 12(8):8091-8103

 [10] Lai PJ., Ng EV., Yang SK., Moo CL., Low WY., Yap PS., Lim SE., Lai KS., 2020, Transcriptomic analysis of multi-drug resistant Escherichia coli K-12 strain in response to Lavandula angustifolia essential oil., 3 Biotech 10(7):313

 [11] Le VVH., Olivera C., Spagnuolo J., Davies IG., Rakonjac J., 2020, In vitro synergy between sodium deoxycholate and furazolidone against enterobacteria., BMC Microbiol 20(1):5

 [12] Li Z., Gao X., Shi W., Li X., Ma H., 2013, 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase., Chem Commun (Camb) 49(52):5859-61

 [13] Merkley ED., Parson WW., Daggett V., 2010, Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold., Protein Eng Des Sel 23(5):327-36

 [14] Sastry SS., Jayaraman R., 1984, Nitrofurantoin-resistant mutants of Escherichia coli: isolation and mapping., Mol Gen Genet 196(2):379-80

 [15] Shen L., Schroeder M., Ogorzalek TL., Yang P., Wu FG., Marsh EN., Chen Z., 2014, Surface orientation control of site-specifically immobilized nitro-reductase (NfsB)., Langmuir 30(20):5930-8

 [16] Singh SK., Husain SM., 2018, A Redox-Based Superoxide Generation System Using Quinone/Quinone Reductase., Chembiochem 19(15):1657-1663

 [17] Steenhuis M., Koningstein GM., Oswald J., Pick T., O'Keefe S., Koch HG., Cavalie A., Whitehead RC., Swanton E., High S., Luirink J., 2021, Eeyarestatin 24 impairs SecYEG-dependent protein trafficking and inhibits growth of clinically relevant pathogens., Mol Microbiol 115(1):28-40

 [18] Stevens M., Howe C., Ray AM., Washburn A., Chitre S., Sivinski J., Park Y., Hoang QQ., Chapman E., Johnson SM., 2020, Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs., Bioorg Med Chem 28(22):115710

 [19] Valle A., Le Borgne S., Bolivar J., Cabrera G., Cantero D., 2012, Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl 2-(2'-nitrophenoxy)acetate to 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), a benzohydroxamic acid with interesting biological properties., Appl Microbiol Biotechnol 94(1):163-71

 [20] Williams EM., Rich MH., Mowday AM., Ashoorzadeh A., Copp JN., Guise CP., Anderson RF., Flanagan JU., Smaill JB., Patterson AV., Ackerley DF., 2019, Engineering Escherichia coli NfsB To Activate a Hypoxia-Resistant Analogue of the PET Probe EF5 To Enable Non-Invasive Imaging during Enzyme Prodrug Therapy., Biochemistry 58(35):3700-3710

 [21] de la Calle ME., Cabrera G., Cantero D., Valle A., Bolivar J., 2019, Overexpression of the nitroreductase NfsB in an E. coli strain as a whole-cell biocatalyst for the production of chlorinated analogues of the natural herbicide DIBOA., N Biotechnol 50:9-19

 [22] de la Calle ME., Cabrera G., Cantero D., Valle A., Bolivar J., 2019, A genetically engineered Escherichia coli strain overexpressing the nitroreductase NfsB is capable of producing the herbicide D-DIBOA with 100% molar yield., Microb Cell Fact 18(1):86

 [23] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB