RegulonDB RegulonDB 10.8: Gene Form
   

cheY gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

cheB cheZ cheY TSS_2227 TSS_2227 TSS_2226 TSS_2226 TSS_2225 TSS_2225

Gene      
Name: cheY    Texpresso search in the literature
Synonym(s): ECK1883, EG10150, b1882
Genome position(nucleotides): 1967048 <-- 1967437 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
49.23
External database links:  
ASAP:
ABE-0006280
CGSC:
924
ECHOBASE:
EB0148
OU-MICROARRAY:
b1882
PortEco:
cheY
STRING:
511145.b1882
COLOMBOS: cheY


Product      
Name: chemotaxis protein CheY
Synonym(s): CheY, chemotaxis response regulator protein CheY
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 14.097
Isoelectric point: 4.609
Motif(s):
 
Type Positions Sequence
57 -> 57 D
87 -> 87 T
92 -> 92 K
106 -> 106 Y
7 -> 124 KFLVVDDFSTMRRIVRNLLKELGFNNVEEAEDGVDALNKLQAGGYGFVISDWNMPNMDGLELLKTIRADGAMSALPVLMVTAEAKKENIIAAAQAGASGYVVKPFTAATLEEKLNKIF

 

Classification:
Multifun Terms (GenProtEC)  
  5 - cell processes --> 5.3 - motility, chemotaxis, energytaxis (aerotaxis, redoxtaxis etc)
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
molecular_function GO:0005515 - protein binding
GO:0046872 - metal ion binding
GO:0016407 - acetyltransferase activity
GO:0000156 - phosphorelay response regulator activity
GO:0000287 - magnesium ion binding
biological_process GO:0043052 - thermotaxis
GO:0006473 - protein acetylation
GO:0000160 - phosphorelay signal transduction system
GO:0006935 - chemotaxis
GO:0023014 - signal transduction by protein phosphorylation
GO:0018393 - internal peptidyl-lysine acetylation
GO:0009454 - aerotaxis
GO:1902021 - regulation of bacterial-type flagellum-dependent cell motility
GO:0097588 - archaeal or bacterial-type flagellum-dependent cell motility
Note(s): Note(s): ...[more].
Reference(s): [1] Alon U., et al., 1998
[2] Bellsolell L., et al., 1996
[3] Di Paolo D., et al., 2016
[4] Dyer CM., et al., 2006
[5] Filimonov VV., et al., 1993
[6] Fraiberg M., et al., 2015
[7] Halkides CJ., et al., 2007
[8] Halkides CJ., et al., 2000
[9] Halkides CJ., et al., 1998
[10] Hess JF., et al., 1988
[11] Hubbard JA., et al., 2003
[12] Immormino RM., et al., 2016
[13] Jiang M., et al., 1997
[14] Kato M., et al., 1999
[15] Lee SY., et al., 2001
[16] Li R., et al., 2013
[17] Liarzi O., et al., 2010
[18] Ma L., et al., 2007
[19] Matsumura P., et al., 1984
[20] McAdams K., et al., 2008
[21] McEvoy MM., et al., 1998
[22] Mo G., et al., 2012
[23] Montrone M., et al., 1998
[24] Oosawa K., et al., 1988
[25] Pao GM., et al., 1995
[26] Parkinson JS. 1993
[27] Parkinson JS., et al., 1992
[28] Prasad K., et al., 1998
[29] Saier MH. 1994
[30] Silversmith RE., et al., 1998
[31] Stewart RC., et al., 2000
[32] Stewart RC., et al., 2004
[33] Stewart RC., et al., 2004
[34] Stock AM., et al., 2006
[35] Stock JB., et al., 1990
[36] Turner L., et al., 1999
[37] Welch M., et al., 1998
[38] Yuan J., et al., 2010
External database links:  
DIP:
DIP-6052N
ECOCYC:
CHEY-MONOMER
ECOLIWIKI:
b1882
INTERPRO:
IPR011006
INTERPRO:
IPR001789
PDB:
1A0O
PDB:
1AB5
PDB:
1AB6
PDB:
1BDJ
PDB:
1C4W
PDB:
1CEY
PDB:
1CHN
PDB:
1CYE
PDB:
1D4Z
PDB:
1DJM
PDB:
1E6K
PDB:
1E6L
PDB:
1E6M
PDB:
1EAY
PDB:
1EHC
PDB:
1F4V
PDB:
1FFG
PDB:
1FFS
PDB:
1FFW
PDB:
1FQW
PDB:
1HEY
PDB:
1JBE
PDB:
1KMI
PDB:
1MIH
PDB:
1U8T
PDB:
1UDR
PDB:
1VLZ
PDB:
1YMU
PDB:
1YMV
PDB:
1ZDM
PDB:
2B1J
PDB:
2ID7
PDB:
2ID9
PDB:
2IDM
PDB:
2LP4
PDB:
3CHY
PDB:
3F7N
PDB:
3FFT
PDB:
3FFW
PDB:
3FFX
PDB:
3FGZ
PDB:
3MYY
PDB:
3OLV
PDB:
3OLW
PDB:
3OLX
PDB:
3OLY
PDB:
3OO0
PDB:
3OO1
PDB:
3RVJ
PDB:
3RVK
PDB:
3RVL
PDB:
3RVM
PDB:
3RVN
PDB:
3RVO
PDB:
3RVP
PDB:
3RVQ
PDB:
3RVR
PDB:
3RVS
PDB:
5CHY
PDB:
5D2C
PDB:
5DGC
PDB:
5DKF
PDB:
6CHY
PFAM:
PF00072
PRIDE:
P0AE67
PRODB:
PRO_000022281
PROSITE:
PS50110
REFSEQ:
NP_416396
SMART:
SM00448
SMR:
P0AE67
SWISSMODEL:
P0AE67
UNIPROT:
P0AE67


Operon      
Name: tar-tap-cheRBYZ         
Operon arrangement:
Transcription unit        Promoter
tar-tap-cheRBYZ


Transcriptional Regulation      
Display Regulation             
Activated by: FNR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_2225 1967578 reverse nd [RS-EPT-CBR] [39]
  promoter TSS_2226 1967584 reverse nd [RS-EPT-CBR] [39]
  promoter TSS_2227 1968082 reverse nd [RS-EPT-CBR] [39]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Alon U., Camarena L., Surette MG., Aguera y Arcas B., Liu Y., Leibler S., Stock JB., 1998, Response regulator output in bacterial chemotaxis., EMBO J 17(15):4238-48

 [2] Bellsolell L., Cronet P., Majolero M., Serrano L., Coll M., 1996, The three-dimensional structure of two mutants of the signal transduction protein CheY suggest its molecular activation mechanism., J Mol Biol 257(1):116-28

 [3] Di Paolo D., Afanzar O., Armitage JP., Berry RM., 2016, Single-molecule imaging of electroporated dye-labelled CheY in live Escherichia coli., Philos Trans R Soc Lond B Biol Sci 371(1707)

 [4] Dyer CM., Dahlquist FW., 2006, Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM., J Bacteriol 188(21):7354-63

 [5] Filimonov VV., Prieto J., Martinez JC., Bruix M., Mateo PL., Serrano L., 1993, Thermodynamic analysis of the chemotactic protein from Escherichia coli, CheY., Biochemistry 32(47):12906-21

 [6] Fraiberg M., Afanzar O., Cassidy CK., Gabashvili A., Schulten K., Levin Y., Eisenbach M., 2015, CheY's acetylation sites responsible for generating clockwise flagellar rotation in Escherichia coli., Mol Microbiol 95(2):231-44

 [7] Halkides CJ., Bottone CJ., Casper ES., Haas RM., McAdams K., 2007, Synthesis of a stable analog of the phosphorylated form of CheY: phosphono-CheY., Methods Enzymol 422:338-51

 [8] Halkides CJ., McEvoy MM., Casper E., Matsumura P., Volz K., Dahlquist FW., 2000, The 1.9 A resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY., Biochemistry 39(18):5280-6

 [9] Halkides CJ., Zhu X., Phillion DP., Matsumura P., Dahlquist FW., 1998, Synthesis and biochemical characterization of an analogue of CheY-phosphate, a signal transduction protein in bacterial chemotaxis., Biochemistry 37(39):13674-80

 [10] Hess JF., Bourret RB., Simon MI., 1988, Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis., Nature 336(6195):139-43

 [11] Hubbard JA., MacLachlan LK., King GW., Jones JJ., Fosberry AP., 2003, Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli., Mol Microbiol 49(5):1191-200

 [12] Immormino RM., Silversmith RE., Bourret RB., 2016, A Variable Active Site Residue Influences the Kinetics of Response Regulator Phosphorylation and Dephosphorylation., Biochemistry 55(39):5595-5609

 [13] Jiang M., Bourret RB., Simon MI., Volz K., 1997, Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.3 A structure of an aspartate to lysine mutant at position 13 of CheY., J Biol Chem 272(18):11850-5

 [14] Kato M., Shimizu T., Mizuno T., Hakoshima T., 1999, Structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor protein ArcB complexed with the chemotaxis response regulator CheY., Acta Crystallogr D Biol Crystallogr 55(Pt 7):1257-63

 [15] Lee SY., Cho HS., Pelton JG., Yan D., Berry EA., Wemmer DE., 2001, Crystal structure of activated CheY. Comparison with other activated receiver domains., J Biol Chem 276(19):16425-31

 [16] Li R., Chen P., Gu J., Deng JY., 2013, Acetylation reduces the ability of CheY to undergo autophosphorylation., FEMS Microbiol Lett 347(1):70-6

 [17] Liarzi O., Barak R., Bronner V., Dines M., Sagi Y., Shainskaya A., Eisenbach M., 2010, Acetylation represses the binding of CheY to its target proteins., Mol Microbiol 76(4):932-43

 [18] Ma L., Cui Q., 2007, Activation mechanism of a signaling protein at atomic resolution from advanced computations., J Am Chem Soc 129(33):10261-8

 [19] Matsumura P., Rydel JJ., Linzmeier R., Vacante D., 1984, Overexpression and sequence of the Escherichia coli cheY gene and biochemical activities of the CheY protein., J Bacteriol 160(1):36-41

 [20] McAdams K., Casper ES., Matthew Haas R., Santarsiero BD., Eggler AL., Mesecar A., Halkides CJ., 2008, The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY help to explain their binding affinities to the FliM and CheZ peptides., Arch Biochem Biophys 479(2):105-13

 [21] McEvoy MM., Hausrath AC., Randolph GB., Remington SJ., Dahlquist FW., 1998, Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway., Proc Natl Acad Sci U S A 95(13):7333-8

 [22] Mo G., Zhou H., Kawamura T., Dahlquist FW., 2012, Solution structure of a complex of the histidine autokinase CheA with its substrate CheY., Biochemistry 51(18):3786-98

 [23] Montrone M., Eisenbach M., Oesterhelt D., Marwan W., 1998, Regulation of switching frequency and bias of the bacterial flagellar motor by CheY and fumarate., J Bacteriol 180(13):3375-80

 [24] Oosawa K., Hess JF., Simon MI., 1988, Mutants defective in bacterial chemotaxis show modified protein phosphorylation., Cell 53(1):89-96

 [25] Pao GM., Saier MH., 1995, Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution., J Mol Evol 40(2):136-54

 [26] Parkinson JS., 1993, Signal transduction schemes of bacteria., Cell 73(5):857-71

 [27] Parkinson JS., Kofoid EC., 1992, Communication modules in bacterial signaling proteins., Annu Rev Genet 26:71-112

 [28] Prasad K., Caplan SR., Eisenbach M., 1998, Fumarate modulates bacterial flagellar rotation by lowering the free energy difference between the clockwise and counterclockwise states of the motor., J Mol Biol 280(5):821-8

 [29] Saier MH., 1994, Bacterial sensor kinase/response regulator systems: an introduction., Res Microbiol 145(5-6):349-55

 [30] Silversmith RE., Bourret RB., 1998, Synthesis and characterization of a stable analog of the phosphorylated form of the chemotaxis protein CheY., Protein Eng 11(3):205-12

 [31] Stewart RC., Jahreis K., Parkinson JS., 2000, Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain., Biochemistry 39(43):13157-65

 [32] Stewart RC., Van Bruggen R., 2004, Association and dissociation kinetics for CheY interacting with the P2 domain of CheA., J Mol Biol 336(1):287-301

 [33] Stewart RC., VanBruggen R., 2004, Phosphorylation and binding interactions of CheY studied by use of Badan-labeled protein., Biochemistry 43(27):8766-77

 [34] Stock AM., Guhaniyogi J., 2006, A new perspective on response regulator activation., J Bacteriol 188(21):7328-30

 [35] Stock JB., Stock AM., Mottonen JM., 1990, Signal transduction in bacteria., Nature 344(6265):395-400

 [36] Turner L., Samuel AD., Stern AS., Berg HC., 1999, Temperature dependence of switching of the bacterial flagellar motor by the protein CheY(13DK106YW)., Biophys J 77(1):597-603

 [37] Welch M., Chinardet N., Mourey L., Birck C., Samama JP., 1998, Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY., Nat Struct Biol 5(1):25-9

 [38] Yuan J., Fahrner KA., Turner L., Berg HC., 2010, Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor., Proc Natl Acad Sci U S A 107(29):12846-9

 [39] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB