RegulonDB RegulonDB 10.9: Gene Form
   

dam gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

damX dam rpe gph terminator TSS_3990 TSS_3990 TSS_3989 TSS_3989 TSS_3988 TSS_3988 TSS_3987 TSS_3987 damp1 damp1 damp2 damp2 TSS_3986 TSS_3986 TSS_3985 TSS_3985 rpep rpep TSS_3984 TSS_3984

Gene      
Name: dam    Texpresso search in the literature
Synonym(s): ECK3374, EG10204, b3387
Genome position(nucleotides): 3515077 <-- 3515913 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
49.58
External database links:  
ASAP:
ABE-0011063
CGSC:
881
ECHOBASE:
EB0200
ECOLIHUB:
dam
OU-MICROARRAY:
b3387
STRING:
511145.b3387
COLOMBOS: dam


Product      
Name: DNA adenine methyltransferase
Synonym(s): Dam
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 32.1
Isoelectric point: 8.785
Motif(s):
 
Type Positions Sequence
10 -> 251 WAGGKYPLLDDIKRHLPKGECLVEPFVGAGSVFLNTDFSRYILADINSDLISLYNIVKMRTDEYVQAARELFVPETNCAEVYYQFREEFNKSQDPFRRAVLFLYLNRYGYNGLCRYNLRGEFNVPFGRYKKPYFPEAELYHFAEKAQNAFFYCESYADSMARADDASVVYCDPPYAPLSATANFTAYHTNSFTLEQQAHLAEIAEGLVERHIPVLISNHDTMLTREWYQRAKLHVVKVRRSI

 

Classification:
Multifun Terms (GenProtEC)  
  2 - information transfer --> 2.1 - DNA related --> 2.1.1 - DNA replication
  2 - information transfer --> 2.1 - DNA related --> 2.1.4 - DNA repair
  3 - regulation --> 3.1 - type of regulation --> 3.1.1 - DNA structure level --> 3.1.1.2 - methylation
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0003676 - nucleic acid binding
GO:0005515 - protein binding
GO:0008168 - methyltransferase activity
GO:0016740 - transferase activity
GO:0009007 - site-specific DNA-methyltransferase (adenine-specific) activity
GO:0043565 - sequence-specific DNA binding
GO:1904047 - S-adenosyl-L-methionine binding
biological_process GO:0006260 - DNA replication
GO:0006261 - DNA-dependent DNA replication
GO:0009411 - response to UV
GO:0032259 - methylation
GO:0006298 - mismatch repair
GO:0032775 - DNA methylation on adenine
GO:1902328 - bacterial-type DNA replication initiation
Note(s): Note(s): ...[more].
Reference(s): [1] Abeles AL., et al., 1988
[2] Adam M., et al., 2008
[3] Arraj JA., et al., 1983
[4] Bach T., et al., 2004
[5] Backman K. 1980
[6] Bae SH., et al., 2003
[7] Bale A., et al., 1979
[8] Barbeyron T., et al., 1984
[9] Barras F., et al., 1988
[10] Bebenek K., et al., 1985
[11] Bebenek K., et al., 1983
[12] Bell DC., et al., 2001
[13] Belogurov AA., et al., 1987
[14] Bogan JA., et al., 1997
[15] Boonsombat R., et al., 2006
[16] Brezellec P., et al., 2006
[17] Brooks JE., et al., 1983
[18] Bur'ianov IaI., et al., 1981
[19] Buryanov YaI., et al., 1984
[20] Caillet-Fauquet P., et al., 1988
[21] Caillet-Fauquet P., et al., 1984
[22] Calmann MA., et al., 2003
[23] Campbell JL., et al., 1988
[24] Carraway M., et al., 1993
[25] Carraway M., et al., 1988
[26] Carraway M., et al., 1987
[27] Charlier D., et al., 1994
[28] Cheng SC., et al., 1985
[29] Craig RJ., et al., 1984
[30] Daghfous D., et al., 2006
[31] Doolittle MM., et al., 1988
[32] Dreiseikelmann B., et al., 1979
[33] Duranti T., et al., null
[34] Efimova EP., et al., 1988
[35] Ferullo DJ., et al., 2008
[36] Forterre P., et al., 1984
[37] Fujimoto D., et al., 1965
[38] Glickman B., et al., 1978
[39] Glickman BW. 1979
[40] Glickman BW., et al., 1980
[41] Goze A., et al., 1978
[42] Guha S., et al., 1992
[43] Guo Q., et al., 1995
[44] Guschlbauer W. 1988
[45] Hale WB., et al., 1994
[46] Hattman S. 1979
[47] Hattman S. 1982
[48] Hattman S., et al., 1978
[49] Hughes P., et al., 1989
[50] Hulsmann KH., et al., 1991
[51] Jacquelin DK., et al., 2008
[52] Janion C., et al., 1987
[53] Janion C., et al., 1989
[54] Jonczyk P., et al., 1989
[55] Jones M., et al., 1981
[56] Karlin S., et al., 1991
[57] Kelleher JE., et al., 1994
[58] Khatoon H., et al., 1978
[59] Kimura T., et al., 1989
[60] Klysik J. 1996
[61] Kriebardis A., et al., 1987
[62] Landoulsi A., et al., 1989
[63] Landoulsi A., et al., 1990
[64] Lobner-Olesen A., et al., 1992
[65] Lobner-Olesen A., et al., 1994
[66] Lobner-Olesen A., et al., 1996
[67] Lovett ST., et al., 1996
[68] Lu M., et al., 1994
[69] Lundblad V., et al., 1982
[70] Lyngstadaas A., et al., 1995
[71] Maas R. 2001
[72] Marinus MG. 1980
[73] Marinus MG., et al., 1983
[74] Marinus MG., et al., 1976
[75] Marinus MG., et al., 1975
[76] Marinus MG., et al., 1984
[77] Matic I., et al., 2006
[78] McClelland M. 1985
[79] McCool JD., et al., 2004
[80] McGraw BR., et al., 1980
[81] Meury J., et al., 1995
[82] Norris V. 1990
[83] Nowosielska A., et al., 2005
[84] Nowosielska A., et al., 2008
[85] O'Reilly EK., et al., 2004
[86] Olsson J., et al., 2002
[87] Olsson JA., et al., 2003
[88] Onogi T., et al., 2000
[89] Parniewski P., et al., 1990
[90] Peterson KR., et al., 1985
[91] Plasterk RH., et al., 1984
[92] Plasterk RH., et al., 1983
[93] Pollak AJ., et al., 2015
[94] Poteete AR. 2009
[95] Rao BS., et al., 1998
[96] Rasmussen LJ., et al., 1995
[97] Rasmussen LJ., et al., 1994
[98] Rewinski C., et al., 1987
[99] Rooney JP., et al., 2009
[100] Sargentini NJ., et al., 2016
[101] Schaaper RM. 1989
[102] Schlagman SL., et al., 1986
[103] Sledziewska-Gojska E., et al., 1982
[104] Sneppen K., et al., 2014
[105] Sohanpal BK., et al., 2004
[106] Sutera VA., et al., 2006
[107] Szyf M., et al., 1982
[108] Szyf M., et al., 1986
[109] Tavazoie S., et al., 1998
[110] Toussaint A. 1977
[111] Troester H., et al., 2000
[112] Tuzikov FV., et al., 1986
[113] Tuzikov FV., et al., 1989
[114] Tuzikov FV., et al., 1996
[115] Vaisvila R., et al., 2000
[116] Vinella D., et al., 1992
[117] Waldminghaus T., et al., 2012
[118] Wang TC., et al., 1986
[119] Wu TH., et al., 1992
[120] Yallaly P., et al., 1990
[121] Yang H., et al., 2004
[122] Zaporozhets DA., et al., 1996
[123] Zhou P., et al., 1997
[124] Zieg J., et al., 1978
[125] van der Woude M., et al., 1998
[126] von Freiesleben U., et al., 1994
External database links:  
DIP:
DIP-47948N
ECOCYC:
EG10204-MONOMER
ECOLIWIKI:
b3387
INTERPRO:
IPR012263
INTERPRO:
IPR029063
INTERPRO:
IPR012327
INTERPRO:
IPR023095
INTERPRO:
IPR002052
MODBASE:
P0AEE8
PANTHER:
PTHR30481
PDB:
4GOL
PDB:
4RTS
PDB:
4RTR
PDB:
4RTQ
PDB:
4RTP
PDB:
4RTO
PDB:
4RTN
PDB:
4RTM
PDB:
2G1P
PDB:
2ORE
PDB:
4GBE
PDB:
4GOM
PDB:
4GON
PDB:
4GOO
PDB:
4RTJ
PDB:
4RTK
PDB:
4RTL
PFAM:
PF02086
PRIDE:
P0AEE8
PRINTS:
PR00505
PRODB:
PRO_000022398
PROSITE:
PS00092
REFSEQ:
NP_417846
SMR:
P0AEE8
UNIPROT:
P0AEE8


Operon      
Name: aroKB-damX-dam-rpe-gph-trpS         
Operon arrangement:
Transcription unit        Promoter
trpS
rpe-gph-trpS
dam-rpe-gph-trpS
dam-rpe-gph-trpS
damX-dam-rpe-gph-trpS
aroKB-damX-dam-rpe-gph-trpS
aroKB-damX-dam-rpe-gph-trpS


RNA cis-regulatory element    
Attenuation: Translational


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_3984 3515139 reverse nd [RS-EPT-CBR] [127]
  promoter TSS_3985 3515154 reverse nd [RS-EPT-CBR] [127]
  promoter TSS_3986 3515191 reverse nd [RS-EPT-CBR] [127]
  promoter TSS_3987 3517035 reverse nd [RS-EPT-CBR] [127]
  promoter TSS_3988 3517068 reverse nd [RS-EPT-CBR] [127]
  promoter TSS_3989 3517080 reverse nd [RS-EPT-CBR] [127]
  promoter TSS_3990 3517298 reverse nd [RS-EPT-CBR] [127]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Abeles AL., Austin SJ., 1988, P1 plasmid replication requires Escherichia coli Dam-methylated DNA., Gene 74(1):185-6

 [2] Adam M., Murali B., Glenn NO., Potter SS., 2008, Epigenetic inheritance based evolution of antibiotic resistance in bacteria., BMC Evol Biol 8:52

 [3] Arraj JA., Marinus MG., 1983, Phenotypic reversal in dam mutants of Escherichia coli K-12 by a recombinant plasmid containing the dam+ gene., J Bacteriol 153(1):562-5

 [4] Bach T., Skarstad K., 2004, Re-replication from non-sequesterable origins generates three-nucleoid cells which divide asymmetrically., Mol Microbiol 51(6):1589-600

 [5] Backman K., 1980, A cautionary note on the use of certain restriction endonucleases with methylated substrates., Gene 11(1-2):169-71

 [6] Bae SH., Cheong HK., Cheong C., Kang S., Hwang DS., Choi BS., 2003, Structure and dynamics of hemimethylated GATC sites: implications for DNA-SeqA recognition., J Biol Chem 278(46):45987-93

 [7] Bale A., d'Alarcao M., Marinus MG., 1979, Characterization of DNA adenine methylation mutants of Escherichia coli K12., Mutat Res 59(2):157-65

 [8] Barbeyron T., Kean K., Forterre P., 1984, DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage., J Bacteriol 160(2):586-90

 [9] Barras F., Marinus MG., 1988, Arrangement of Dam methylation sites (GATC) in the Escherichia coli chromosome., Nucleic Acids Res 16(20):9821-38

 [10] Bebenek K., Janion C., 1985, Ability of base analogs to induce the SOS response: effect of a dam mutation and mismatch repair system., Mol Gen Genet 201(3):519-24

 [11] Bebenek K., Janion C., 1983, Involvement of the mismatch repair system in base analogue-induced mutagenesis., Mol Gen Genet 191(2):276-81

 [12] Bell DC., Cupples CG., 2001, Very-short-patch repair in Escherichia coli requires the dam adenine methylase., J Bacteriol 183(12):3631-5

 [13] Belogurov AA., Efimova EP., Del'ver EP., Zavil'gel'skii GB., 1987, [Weakening of type I restriction in E. coli: the effect of dam mutation]., Mol Gen Mikrobiol Virusol (9):10-6

 [14] Bogan JA., Helmstetter CE., 1997, DNA sequestration and transcription in the oriC region of Escherichia coli., Mol Microbiol 26(5):889-96

 [15] Boonsombat R., Yeh SP., Milne A., Sandler SJ., 2006, A novel dnaC mutation that suppresses priB rep mutant phenotypes in Escherichia coli K-12., Mol Microbiol 60(4):973-83

 [16] Brezellec P., Hoebeke M., Hiet MS., Pasek S., Ferat JL., 2006, DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance., Bioinformatics 22(16):1935-41

 [17] Brooks JE., Blumenthal RM., Gingeras TR., 1983, The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene., Nucleic Acids Res 11(3):837-51

 [18] Bur'ianov IaI., Zakharenko VN., Baev AA., 1981, [Isolation, purification and properties of adenine DNA methylase Eco dam]., Dokl Akad Nauk SSSR 259(6):1492-5

 [19] Buryanov YaI., Zinoviev VV., Vienozhinskis MT., Malygin EG., Nesterenko VF., Popov SG., Gorbunov YuA., 1984, Does the DNA methylase Eco dam pair nucleotide sequences to form site-specific duplexes?, FEBS Lett 168(1):166-8

 [20] Caillet-Fauquet P., Maenhaut-Michel G., 1988, Nature of the SOS mutator activity: genetic characterization of untargeted mutagenesis in Escherichia coli., Mol Gen Genet 213(2-3):491-8

 [21] Caillet-Fauquet P., Maenhaut-Michel G., Radman M., 1984, SOS mutator effect in E. coli mutants deficient in mismatch correction., EMBO J 3(4):707-12

 [22] Calmann MA., Marinus MG., 2003, Regulated expression of the Escherichia coli dam gene., J Bacteriol 185(16):5012-4

 [23] Campbell JL., Kleckner N., 1988, The rate of Dam-mediated DNA adenine methylation in Escherichia coli., Gene 74(1):189-90

 [24] Carraway M., Marinus MG., 1993, Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli., J Bacteriol 175(13):3972-80

 [25] Carraway M., Rewinski C., Wu TH., Marinus MG., 1988, Specificity of the Dam-directed mismatch repair system of Escherichia coli K-12., Gene 74(1):157-8

 [26] Carraway M., Youderian P., Marinus MG., 1987, Spontaneous mutations occur near dam recognition sites in a dam- Escherichia coli host., Genetics 116(3):343-7

 [27] Charlier D., Huysveld N., Roovers M., Glansdorff N., 1994, On the role of the Escherichia coli integration host factor (IHF) in repression at a distance of the pyrimidine specific promoter P1 of the carAB operon., Biochimie 76(10-11):1041-51

 [28] Cheng SC., Herman G., Modrich P., 1985, Extent of equilibrium perturbation of the DNA helix upon enzymatic methylation of adenine residues., J Biol Chem 260(1):191-4

 [29] Craig RJ., Arraj JA., Marinus MG., 1984, Induction of damage inducible (SOS) repair in dam mutants of Escherichia coli exposed to 2-aminopurine., Mol Gen Genet 194(3):539-40

 [30] Daghfous D., Chatti A., Marzouk B., Landoulsi A., 2006, Phospholipid changes in seqA and dam mutants of Escherichia coli., C R Biol 329(4):271-6

 [31] Doolittle MM., Sirotkin K., 1988, Bacteriophage T2 and T4, dam+ and damh and Eco dam+ methylation: preference at different sites., Biochim Biophys Acta 949(2):240-6

 [32] Dreiseikelmann B., Eichenlaub R., Wackernagel W., 1979, The effect of differential methylation by Escherichia coli of plasmid DNA and phage T7 and lambda DNA on the cleavage by restriction endonuclease MboI from Moraxella bovis., Biochim Biophys Acta 562(3):418-28

 [33] Duranti T., La Teana A., Cacciamani T., Volpe P., null, The prokaryotic origin of the pathways for synthesis and post-synthetic modification of deoxyribonucleic acid., RNA Biol 3(1):49-53

 [34] Efimova EP., Delver EP., Belogurov AA., 1988, Alleviation of type I restriction in adenine methylase (dam) mutants of Escherichia coli., Mol Gen Genet 214(2):313-6

 [35] Ferullo DJ., Lovett ST., 2008, The stringent response and cell cycle arrest in Escherichia coli., PLoS Genet 4(12):e1000300

 [36] Forterre P., Squali FZ., Hughes P., Kohiyama M., 1984, Studies on the role of dam methylation at the Escherichia coli chromosome replication origin (oriC)., Adv Exp Med Biol 179:543-9

 [37] Fujimoto D., Srinivasan PR., Borek E., 1965, On the nature of the deoxyribonucleic acid methylases. Biological evidence for the multiple nature of the enzymes., Biochemistry 4(12):2849-55

 [38] Glickman B., van den Elsen P., Radman M., 1978, Induced mutagenesis in dam- mutants of Escherichia coli: a role for 6-methyladenine residues in mutation avoidance., Mol Gen Genet 163(3):307-12

 [39] Glickman BW., 1979, Spontaneous mutagenesis in Escherichia coli strains lacking 6-methyladenine residues in their DNA: an altered mutational spectrum in dam- mutants., Mutat Res 61(2):153-62

 [40] Glickman BW., Radman M., 1980, Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction., Proc Natl Acad Sci U S A 77(2):1063-7

 [41] Goze A., Sedgwick SG., 1978, Increased UV-inducibility of SOS functions in a dam-3 mutant of Escherichia coli K12 uvrA., Mutat Res 52(3):323-31

 [42] Guha S., Guschlbauer W., 1992, Improved plasmids containing the Escherichia coli dam gene under the control of the tac promoter., Biochim Biophys Acta 1132(3):309-10

 [43] Guo Q., Lu M., Kallenbach NR., 1995, Effect of hemimethylation and methylation of adenine on the structure and stability of model DNA duplexes., Biochemistry 34(50):16359-64

 [44] Guschlbauer W., 1988, The DNA and S-adenosylmethionine-binding regions of EcoDam and related methyltransferases., Gene 74(1):211-4

 [45] Hale WB., van der Woude MW., Low DA., 1994, Analysis of nonmethylated GATC sites in the Escherichia coli chromosome and identification of sites that are differentially methylated in response to environmental stimuli., J Bacteriol 176(11):3438-41

 [46] Hattman S., 1979, Unusual modification of bacteriophage Mu DNA., J Virol 32(2):468-75

 [47] Hattman S., 1982, DNA methyltransferase-dependent transcription of the phage Mu mom gene., Proc Natl Acad Sci U S A 79(18):5518-21

 [48] Hattman S., Brooks JE., Masurekar M., 1978, Sequence specificity of the P1 modification methylase (M.Eco P1) and the DNA methylase (M.Eco dam) controlled by the Escherichia coli dam gene., J Mol Biol 126(3):367-80

 [49] Hughes P., Landoulsi A., Kern R., Kohiyama M., 1989, Dam methylated and hemimethylated oriC plasmids are replicated symmetrically; a novel and general test of replication symmetry., Mol Gen Genet 217(2-3):278-80

 [50] Hulsmann KH., Quaas R., Georgalis Y., Saenger W., Hahn U., 1991, High-level expression of a semisynthetic dam gene in Escherichia coli., Gene 98(1):83-8

 [51] Jacquelin DK., Martina MA., Argarana CE., Barra JL., 2008, Plasmid expression of mutS, -L and/or -H gene in Escherichia coli dam cells results in strains that display reduced mutation frequency., Mutat Res 637(1-2):197-204

 [52] Janion C., Bebenek K., Plewako S., 1987, Are Escherichia coli dam- as compared to dam+ hypermutable by base analogs?, Acta Biochim Pol 34(2):183-93

 [53] Janion C., Plewako S., Bebenek K., Sledziewska-Gojska E., 1989, Influence of dam and mismatch repair system on mutagenic and SOS-inducing activity of methyl methanesulfonate in Escherichia coli., Mutat Res 210(1):15-22

 [54] Jonczyk P., Hines R., Smith DW., 1989, The Escherichia coli dam gene is expressed as a distal gene of a new operon., Mol Gen Genet 217(1):85-96

 [55] Jones M., Wagner R., 1981, N-Methyl-N'-nitro-N-nitrosoguanidine sensitivity of E. coli mutants deficient in DNA methylation and mismatch repair., Mol Gen Genet 184(3):562-3

 [56] Karlin S., Macken C., 1991, Assessment of inhomogeneities in an E. coli physical map., Nucleic Acids Res 19(15):4241-6

 [57] Kelleher JE., Raleigh EA., 1994, Response to UV damage by four Escherichia coli K-12 restriction systems., J Bacteriol 176(19):5888-96

 [58] Khatoon H., Bukhari AI., 1978, Bacteriophage Mu-induced modification of DNA is dependent upon a host function., J Bacteriol 136(1):423-8

 [59] Kimura T., Asai T., Imai M., Takanami M., 1989, Methylation strongly enhances DNA bending in the replication origin region of the Escherichia coli chromosome., Mol Gen Genet 219(1-2):69-74

 [60] Klysik J., 1996, Both an altered DNA structure and cellular proteins are involved in protecting a triplex forming an oligopurine-rich sequence from Dam methylation in E. coli., Biochem Genet 34(5-6):165-78

 [61] Kriebardis A., Guschlbauer W., 1987, dam methylase from E. coli. Circular dichroism investigations of the secondary structure and influence of S-adenosylmethionine., FEBS Lett 213(2):297-300

 [62] Landoulsi A., Hughes P., Kern R., Kohiyama M., 1989, dam methylation and the initiation of DNA replication on oriC plasmids., Mol Gen Genet 216(2-3):217-23

 [63] Landoulsi A., Malki A., Kern R., Kohiyama M., Hughes P., 1990, The E. coli cell surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates., Cell 63(5):1053-60

 [64] Lobner-Olesen A., Boye E., Marinus MG., 1992, Expression of the Escherichia coli dam gene., Mol Microbiol 6(13):1841-51

 [65] Lobner-Olesen A., Hansen FG., Rasmussen KV., Martin B., Kuempel PL., 1994, The initiation cascade for chromosome replication in wild-type and Dam methyltransferase deficient Escherichia coli cells., EMBO J 13(8):1856-62

 [66] Lobner-Olesen A., von Freiesleben U., 1996, Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells., EMBO J 15(21):5999-6008

 [67] Lovett ST., Feschenko VV., 1996, Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate., Proc Natl Acad Sci U S A 93(14):7120-4

 [68] Lu M., Campbell JL., Boye E., Kleckner N., 1994, SeqA: a negative modulator of replication initiation in E. coli., Cell 77(3):413-26

 [69] Lundblad V., Kleckner N., 1982, Mutants of Escherichia coli K12 which affect excision of transposon Tn10., Basic Life Sci 20:245-58

 [70] Lyngstadaas A., Lobner-Olesen A., Boye E., 1995, Characterization of three genes in the dam-containing operon of Escherichia coli., Mol Gen Genet 247(5):546-54

 [71] Maas R., 2001, Change of plasmid DNA structure, hypermethylation, and Lon-proteolysis as steps in a replicative cascade., Cell 105(7):945-55

 [72] Marinus MG., 1980, Influence of uvrD3, uvrE502, and recL152 mutations on the phenotypes of Escherichia coli K-12 dam mutants., J Bacteriol 141(1):223-6

 [73] Marinus MG., Carraway M., Frey AZ., Brown L., Arraj JA., 1983, Insertion mutations in the dam gene of Escherichia coli K-12., Mol Gen Genet 192(1-2):288-9

 [74] Marinus MG., Konrad EB., 1976, Hyper-recombination in dam mutants of Escherichia coli K-12., Mol Gen Genet 149(3):273-7

 [75] Marinus MG., Morris NR., 1975, Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12., Mutat Res 28(1):15-26

 [76] Marinus MG., Poteete A., Arraj JA., 1984, Correlation of DNA adenine methylase activity with spontaneous mutability in Escherichia coli K-12., Gene 28(1):123-5

 [77] Matic I., Ekiert D., Radman M., Kohiyama M., 2006, Generation of DNA-free Escherichia coli cells by 2-aminopurine requires mismatch repair and nonmethylated DNA., J Bacteriol 188(1):339-42

 [78] McClelland M., 1985, Selection against dam methylation sites in the genomes of DNA of enterobacteriophages., J Mol Evol 21(4):317-22

 [79] McCool JD., Long E., Petrosino JF., Sandler HA., Rosenberg SM., Sandler SJ., 2004, Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy., Mol Microbiol 53(5):1343-57

 [80] McGraw BR., Marinus MG., 1980, Isolation and characterization of Dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12., Mol Gen Genet 178(2):309-15

 [81] Meury J., Bahloul A., Kohiyama M., 1995, Importance of the replication origin sequestration in cell division of Escherichia coli., Biochimie 77(11):875-9

 [82] Norris V., 1990, DNA replication in Escherichia coli is initiated by membrane detachment of oriC. A model., J Mol Biol 215(1):67-71

 [83] Nowosielska A., Marinus MG., 2005, Cisplatin induces DNA double-strand break formation in Escherichia coli dam mutants., DNA Repair (Amst) 4(7):773-81

 [84] Nowosielska A., Marinus MG., 2008, DNA mismatch repair-induced double-strand breaks., DNA Repair (Amst) 7(1):48-56

 [85] O'Reilly EK., Kreuzer KN., 2004, Isolation of SOS constitutive mutants of Escherichia coli., J Bacteriol 186(21):7149-60

 [86] Olsson J., Dasgupta S., Berg OG., Nordstrom K., 2002, Eclipse period without sequestration in Escherichia coli., Mol Microbiol 44(6):1429-40

 [87] Olsson JA., Nordstrom K., Hjort K., Dasgupta S., 2003, Eclipse-synchrony relationship in Escherichia coli strains with mutations affecting sequestration, initiation of replication and superhelicity of the bacterial chromosome., J Mol Biol 334(5):919-31

 [88] Onogi T., Yamazoe M., Ichinose C., Niki H., Hiraga S., 2000, Null mutation of the dam or seqA gene suppresses temperature-sensitive lethality but not hypersensitivity to novobiocin of muk null mutants., J Bacteriol 182(20):5898-901

 [89] Parniewski P., Kwinkowski M., Wilk A., Klysik J., 1990, Dam methyltransferase sites located within the loop region of the oligopurine-oligopyrimidine sequences capable of forming H-DNA are undermethylated in vivo., Nucleic Acids Res 18(3):605-11

 [90] Peterson KR., Wertman KF., Mount DW., Marinus MG., 1985, Viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon., Mol Gen Genet 201(1):14-9

 [91] Plasterk RH., Vollering M., Brinkman A., Van de Putte P., 1984, Analysis of the methylation-regulated Mu mom transcript., Cell 36(1):189-96

 [92] Plasterk RH., Vrieling H., Van de Putte P., 1983, Transcription initiation of Mu mom depends on methylation of the promoter region and a phage-coded transactivator., Nature 301(5898):344-7

 [93] Pollak AJ., Reich NO., 2015, DNA adenine methyltransferase facilitated diffusion is enhanced by protein-DNA "roadblock" complexes that induce DNA looping., Biochemistry 54(13):2181-92

 [94] Poteete AR., 2009, Expansion of a chromosomal repeat in Escherichia coli: roles of replication, repair, and recombination functions., BMC Mol Biol 10:14

 [95] Rao BS., Buckler-White A., 1998, Direct visualization of site-specific and strand-specific DNA methylation patterns in automated DNA sequencing data., Nucleic Acids Res 26(10):2505-7

 [96] Rasmussen LJ., Lobner-Olesen A., Marinus MG., 1995, Growth-rate-dependent transcription initiation from the dam P2 promoter., Gene 157(1-2):213-5

 [97] Rasmussen LJ., Marinus MG., Lobner-Olesen A., 1994, Novel growth rate control of dam gene expression in Escherichia coli., Mol Microbiol 12(4):631-8

 [98] Rewinski C., Marinus MG., 1987, Mutation spectrum in Escherichia coli DNA mismatch repair deficient (mutH) strain., Nucleic Acids Res 15(20):8205-15

 [99] Rooney JP., George AD., Patil A., Begley U., Bessette E., Zappala MR., Huang X., Conklin DS., Cunningham RP., Begley TJ., 2009, Systems based mapping demonstrates that recovery from alkylation damage requires DNA repair, RNA processing, and translation associated networks., Genomics 93(1):42-51

 [100] Sargentini NJ., Gularte NP., Hudman DA., 2016, Screen for genes involved in radiation survival of Escherichia coli and construction of a reference database., Mutat Res 793-794:1-14

 [101] Schaaper RM., 1989, Escherichia coli mutator mutD5 is defective in the mutHLS pathway of DNA mismatch repair., Genetics 121(2):205-12

 [102] Schlagman SL., Hattman S., Marinus MG., 1986, Direct role of the Escherichia coli Dam DNA methyltransferase in methylation-directed mismatch repair., J Bacteriol 165(3):896-900

 [103] Sledziewska-Gojska E., Janion C., 1982, Effect of proofreading and dam-instructed mismatch repair systems on N4-hydroxycytidine-induced mutagenesis., Mol Gen Genet 186(3):411-8

 [104] Sneppen K., Semsey S., 2014, Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome., Sci Rep 4:7346

 [105] Sohanpal BK., El-Labany S., Lahooti M., Plumbridge JA., Blomfield IC., 2004, Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12., Proc Natl Acad Sci U S A 101(46):16322-7

 [106] Sutera VA., Lovett ST., 2006, The role of replication initiation control in promoting survival of replication fork damage., Mol Microbiol 60(1):229-39

 [107] Szyf M., Gruenbaum Y., Urieli-Shoval S., Razin A., 1982, Studies on the biological role of DNA methylation: V. The pattern of E.coli DNA methylation., Nucleic Acids Res 10(22):7247-59

 [108] Szyf M., Meisels E., Razin A., 1986, Biological role of DNA methylation: sequence-specific single-strand breaks associated with hypomethylation of GATC sites in Escherichia coli DNA., J Bacteriol 168(3):1487-90

 [109] Tavazoie S., Church GM., 1998, Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli., Nat Biotechnol 16(6):566-71

 [110] Toussaint A., 1977, DNA modification of bacteriophage Mu-1 requires both host and bacteriophage functions., J Virol 23(3):825-6

 [111] Troester H., Bub S., Hunziker A., Trendelenburg MF., 2000, Stability of DNA repeats in Escherichia coli dam mutant strains indicates a Dam methylation-dependent DNA deletion process., Gene 258(1-2):95-108

 [112] Tuzikov FV., Zinov'ev VV., Iashina LN., Vavilin VI., Gorbunov IuA., 1986, [Study of the substrate-induced changes in the state of Eco dam methylase using a method of small-angle x-ray scattering]., Mol Biol (Mosk) 20(4):1002-7

 [113] Tuzikov FV., Zinov'ev VV., Vavilin Vi., Malygin EG., Bur'ianov IaI., 1989, [Interaction between Eco dam methylase and double-stranded oligodeoxyribonucleotide]., Dokl Akad Nauk SSSR 304(1):231-4

 [114] Tuzikov FV., Zinoviev VV., Vavilin VI., Malygin EG., 1996, Application of the small-angle X-ray scattering technique for the study of two-step equilibrium enzyme-substrate interactions., Biopolymers 38(2):131-9

 [115] Vaisvila R., Rasmussen LJ., Lobner-Olesen A., von Freiesleben U., Marinus MG., 2000, The LipB protein is a negative regulator of dam gene expression in Escherichia coli., Biochim Biophys Acta 1494(1-2):43-53

 [116] Vinella D., Jaffe A., D'Ari R., Kohiyama M., Hughes P., 1992, Chromosome partitioning in Escherichia coli in the absence of dam-directed methylation., J Bacteriol 174(7):2388-90

 [117] Waldminghaus T., Weigel C., Skarstad K., 2012, Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome., Nucleic Acids Res 40(12):5465-76

 [118] Wang TC., Smith KC., 1986, Inviability of dam recA and dam recB cells of Escherichia coli is correlated with their inability to repair DNA double-strand breaks produced by mismatch repair., J Bacteriol 165(3):1023-5

 [119] Wu TH., Grelland E., Boye E., Marinus MG., 1992, Identification of a weak promoter for the dam gene of Escherichia coli., Biochim Biophys Acta 1131(1):47-52

 [120] Yallaly P., Eisenstark A., 1990, Influence of DNA adenine methylase on the sensitivity of Escherichia coli to near-ultraviolet radiation and hydrogen peroxide., Biochem Biophys Res Commun 169(1):64-9

 [121] Yang H., Wolff E., Kim M., Diep A., Miller JH., 2004, Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach., Mol Microbiol 53(1):283-95

 [122] Zaporozhets DA., Mironov AS., 1996, [Physical mapping of Escherichia coli genome rearrangements using pulsed-field gel electrophoresis and the PCR method]., Genetika 32(1):23-34

 [123] Zhou P., Bogan JA., Welch K., Pickett SR., Wang HJ., Zaritsky A., Helmstetter CE., 1997, Gene transcription and chromosome replication in Escherichia coli., J Bacteriol 179(1):163-9

 [124] Zieg J., Maples VF., Kushner SR., 1978, Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes., J Bacteriol 134(3):958-66

 [125] van der Woude M., Hale WB., Low DA., 1998, Formation of DNA methylation patterns: nonmethylated GATC sequences in gut and pap operons., J Bacteriol 180(22):5913-20

 [126] von Freiesleben U., Rasmussen KV., Schaechter M., 1994, SeqA limits DnaA activity in replication from oriC in Escherichia coli., Mol Microbiol 14(4):763-72

 [127] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB