RegulonDB RegulonDB 10.9: Gene Form
   

groL gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

groL yjeI groS terminator anti-terminator anti-anti-terminator TSS_4960 TSS_4960 yjeIp yjeIp TSS_4958 TSS_4958 TSS_4957 TSS_4957 groLp3 groLp3 TSS_4956 TSS_4956 TSS_4955 TSS_4955 groLp2 groLp2 groLp1 groLp1 TSS_4954 TSS_4954

Gene      
Name: groL    Texpresso search in the literature
Synonym(s): ECK4137, EG10599, b4143, groEL, mopA
Genome position(nucleotides): 4371025 --> 4372671 Genome Browser
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
52.88
Note(s):
External database links:  
ASAP:
ABE-0013568
CGSC:
492
ECHOBASE:
EB0594
ECOLIHUB:
groL
MIM:
605280
MIM:
612233
OU-MICROARRAY:
b4143
STRING:
511145.b4143
COLOMBOS: groL


Product      
Name: chaperonin GroEL
Synonym(s): GroEL, GroL, MopA, cpn60
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 57.329
Isoelectric point: 4.571
Motif(s):
 
Type Positions Sequence
87 -> 87 D
203 -> 203 Y
262 -> 262 L
259 -> 259 L
406 -> 406 A

 

Classification:
Multifun Terms (GenProtEC)  
  2 - information transfer --> 2.3 - protein related --> 2.3.4 - chaperoning, repair (refolding)
  5 - cell processes --> 5.1 - cell division
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
GO:1990220 - GroEL-GroES complex
molecular_function GO:0005515 - protein binding
GO:0016887 - ATPase activity
GO:0051082 - unfolded protein binding
GO:0000166 - nucleotide binding
GO:0005524 - ATP binding
GO:0000287 - magnesium ion binding
GO:0042802 - identical protein binding
biological_process GO:0051301 - cell division
GO:0006457 - protein folding
GO:0007049 - cell cycle
GO:0009408 - response to heat
GO:0042026 - protein refolding
GO:0009314 - response to radiation
GO:0051085 - chaperone cofactor-dependent protein refolding
GO:0019068 - virion assembly
Note(s): Note(s): ...[more].
Reference(s): [1] Azem A., et al., 1994
[2] Brocchieri L., et al., 2000
[3] Georgopoulos CP., et al., 1972
[4] Hendrix RW. 1979
[5] Libich DS., et al., 2015
[6] Libich DS., et al., 2015
[7] Libich DS., et al., 2017
[8] Lorimer GH., et al., 2018
[9] Marchenko NY., et al., 2015
[10] Roh SH., et al., 2017
[11] Sargentini NJ., et al., 2016
[12] Spangfort MD., et al., 1994
[13] Spangfort MD., et al., 1993
[14] Svensson LA., et al., 1994
[15] Zahn R., et al., 1996
[16] Zahn R., et al., 1996
External database links:  
DIP:
DIP-339N
ECOCYC:
EG10599-MONOMER
ECOLIWIKI:
b4143
INTERPRO:
IPR001844
INTERPRO:
IPR002423
INTERPRO:
IPR027413
INTERPRO:
IPR027409
INTERPRO:
IPR027410
INTERPRO:
IPR018370
MINT:
P0A6F5
MODBASE:
P0A6F5
PDB:
1AON
PDB:
1DK7
PDB:
5W0S
PDB:
5OPX
PDB:
5OPW
PDB:
4WSC
PDB:
1DKD
PDB:
1FY9
PDB:
1FYA
PDB:
1GR5
PDB:
1GRL
PDB:
1GRU
PDB:
1JON
PDB:
1KID
PDB:
1KP8
PDB:
1LA1
PDB:
1MNF
PDB:
1OEL
PDB:
1PCQ
PDB:
1PF9
PDB:
1SS8
PDB:
1SVT
PDB:
1SX3
PDB:
1SX4
PDB:
1XCK
PDB:
2C7C
PDB:
2C7D
PDB:
2C7E
PDB:
2CGT
PDB:
2EU1
PDB:
2NWC
PDB:
2YEY
PDB:
3C9V
PDB:
3CAU
PDB:
3VZ6
PDB:
3VZ7
PDB:
3VZ8
PDB:
3WVL
PDB:
3ZPZ
PDB:
3ZQ0
PDB:
3ZQ1
PDB:
4AAQ
PDB:
4AAR
PDB:
4AAS
PDB:
4AAU
PDB:
4AB2
PDB:
4AB3
PDB:
4V43
PDB:
4WGL
PFAM:
PF00118
PRIDE:
P0A6F5
PRINTS:
PR00298
PRODB:
PRO_000022838
PROSITE:
PS00296
REFSEQ:
NP_418567
SMR:
P0A6F5
UNIPROT:
P0A6F5


Operon      
Name: groSL         
Operon arrangement:
Transcription unit        Promoter
groSL
groSL
groL
groL
groL


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_4954 4370692 forward nd [RS-EPT-CBR] [17]
  promoter TSS_4955 4370897 forward nd [RS-EPT-CBR] [17]
  promoter TSS_4956 4370958 forward nd [RS-EPT-CBR] [17]
  promoter TSS_4957 4371007 forward nd [RS-EPT-CBR] [17]
  promoter TSS_4958 4371474 forward nd [RS-EPT-CBR] [17]
  promoter TSS_4960 4372763 forward nd [RS-EPT-CBR] [17]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Azem A., Diamant S., Goloubinoff P., 1994, Effect of divalent cations on the molecular structure of the GroEL oligomer., Biochemistry 33(21):6671-5

 [2] Brocchieri L., Karlin S., 2000, Conservation among HSP60 sequences in relation to structure, function, and evolution., Protein Sci 9(3):476-86

 [3] Georgopoulos CP., Hendrix RW., Kaiser AD., Wood WB., 1972, Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly., Nat New Biol 239(89):38-41

 [4] Hendrix RW., 1979, Purification and properties of groE, a host protein involved in bacteriophage assembly., J Mol Biol 129(3):375-92

 [5] Libich DS., Tugarinov V., Clore GM., 2015, Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR., Proc Natl Acad Sci U S A 112(29):8817-23

 [6] Libich DS., Tugarinov V., Clore GM., 2015, Reply to Marchenko et al.: Flux analysis of GroEL-assisted protein folding/unfolding., Proc Natl Acad Sci U S A 112(50):E6833-4

 [7] Libich DS., Tugarinov V., Ghirlando R., Clore GM., 2017, Confinement and Stabilization of Fyn SH3 Folding Intermediate Mimetics within the Cavity of the Chaperonin GroEL Demonstrated by Relaxation-Based NMR., Biochemistry 56(7):903-906

 [8] Lorimer GH., Fei X., Ye X., 2018, The GroEL chaperonin: a protein machine with pistons driven by ATP binding and hydrolysis., Philos Trans R Soc Lond B Biol Sci 373(1749)

 [9] Marchenko NY., Marchenkov VV., Semisotnov GV., Finkelstein AV., 2015, Strict experimental evidence that apo-chaperonin GroEL does not accelerate protein folding, although it does accelerate one of its steps., Proc Natl Acad Sci U S A 112(50):E6831-2

 [10] Roh SH., Hryc CF., Jeong HH., Fei X., Jakana J., Lorimer GH., Chiu W., 2017, Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM., Proc Natl Acad Sci U S A 114(31):8259-8264

 [11] Sargentini NJ., Gularte NP., Hudman DA., 2016, Screen for genes involved in radiation survival of Escherichia coli and construction of a reference database., Mutat Res 793-794:1-14

 [12] Spangfort MD., Surin BP., Dixon NE., Svensson LA., 1994, Internal symmetry of the molecular chaperone cpn60 (GroEL) determined by X-ray crystallography., Acta Crystallogr D Biol Crystallogr 50(Pt 4):591-5

 [13] Spangfort MD., Surin BP., Oppentocht JE., Weibull C., Carlemalm E., Dixon NE., Svensson LA., 1993, Crystallization and preliminary X-ray investigation of the Escherichia coli molecular chaperone cpn60 (GroEL)., FEBS Lett 320(2):160-4

 [14] Svensson LA., Surin BP., Dixon NE., Spangfort MD., 1994, The symmetry of Escherichia coli cpn60 (GroEL) determined by X-ray crystallography., J Mol Biol 235(1):47-52

 [15] Zahn R., Perrett S., Fersht AR., 1996, Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity., J Mol Biol 261(1):43-61

 [16] Zahn R., Perrett S., Stenberg G., Fersht AR., 1996, Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB., Science 271(5249):642-5

 [17] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB