RegulonDB RegulonDB 10.8: Gene Form
   

poxB gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

poxB ltaE hcr SoxS MarA poxBp poxBp ltaEp ltaEp

Gene      
Name: poxB    Texpresso search in the literature
Synonym(s): ECK0862, EG10754, b0871
Genome position(nucleotides): 909331 <-- 911049 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
54.04
External database links:  
ASAP:
ABE-0002958
CGSC:
369
ECHOBASE:
EB0747
OU-MICROARRAY:
b0871
PortEco:
poxB
STRING:
511145.b0871
COLOMBOS: poxB


Product      
Name: pyruvate oxidase
Synonym(s): PoxB
Sequence: Get amino acid sequence Fasta Format
Cellular location: inner membrane,cytosol
Molecular weight: 62.011
Isoelectric point: 6.237
Motif(s):
 
Type Positions Sequence
570 -> 572 WLR
379 -> 525 DVGTPTVWAARYLKMNGKRRLLGSFNHGSMANAMPQALGAQATEPERQVVAMCGDGGFSMLMGDFLSVVQMKLPVKIVVFNNSVLGFVAMEMKAGGYLTDGTELHDTNFARIAEACGITGIRVEKASEVDEALQRAFSIDGPVLVDV
533 -> 533 A
572 -> 572 R
364 -> 365 QQ

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.1 - carbon utilization --> 1.1.1 - carbon compounds
  1 - metabolism --> 1.4 - energy production/transport --> 1.4.1 - electron donors
  1 - metabolism --> 1.7 - central intermediary metabolism --> 1.7.28 - pyruvate oxidation
  6 - cell structure --> 6.1 - membrane
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
GO:0016020 - membrane
GO:0005886 - plasma membrane
GO:0032991 - protein-containing complex
molecular_function GO:0003824 - catalytic activity
GO:0016491 - oxidoreductase activity
GO:0050660 - flavin adenine dinucleotide binding
GO:0000287 - magnesium ion binding
GO:0008289 - lipid binding
GO:0030976 - thiamine pyrophosphate binding
GO:0042802 - identical protein binding
GO:0052737 - pyruvate dehydrogenase (quinone) activity
biological_process GO:0006090 - pyruvate metabolic process
GO:0042867 - pyruvate catabolic process
GO:0055114 - oxidation-reduction process
Note(s): Note(s): ...[more].
Reference(s): [1] Baez A., et al., 2009
[2] Barassi CA., et al., 1986
[3] Causey TB., et al., 2004
[4] Chang TF., et al., 2004
[5] Chang YY., et al., 1991
[6] De Mey M., et al., 2010
[7] Flores N., et al., 2004
[8] Gonidakis S., et al., 2010
[9] Grabau C., et al., 1984
[10] Hubner G., et al., 1998
[11] Ito A., et al., 2008
[12] Kang Z., et al., 2009
[13] Lara AR., et al., 2006
[14] Lelong C., et al., 2007
[15] Li M., et al., 2006
[16] Marschall C., et al., 1995
[17] Mather MW., et al., 1985
[18] Nakashima N., et al., 2014
[19] Ojima Y., et al., 2009
[20] Sabido A., et al., 2014
[21] Sharma P., et al., 2012
[22] Sigala JC., et al., 2009
[23] Son YJ., et al., 2011
[24] Tomar A., et al., 2003
[25] Torchut E., et al., 1994
[26] Torchut E., et al., 1995
[27] Williams FR., et al., 1966
[28] Wittmann C., et al., 2007
[29] Zhu Y., et al., 2010
External database links:  
DIP:
DIP-36216N
ECOCYC:
PYRUVOXID-MONOMER
ECOLIWIKI:
b0871
INTERPRO:
IPR011766
INTERPRO:
IPR029061
INTERPRO:
IPR029035
INTERPRO:
IPR012001
INTERPRO:
IPR012000
INTERPRO:
IPR000399
MODBASE:
P07003
PDB:
3EYA
PDB:
3EY9
PFAM:
PF02776
PFAM:
PF02775
PFAM:
PF00205
PRIDE:
P07003
PRODB:
PRO_000023575
PROSITE:
PS00187
REFSEQ:
NP_415392
SMR:
P07003
UNIPROT:
P07003


Operon      
Name: hcp-hcr-poxB-ltaE-ybjT         
Operon arrangement:
Transcription unit        Promoter
ltaE-ybjT
poxB
hcp-hcr
hcp-hcr-poxB
hcp-hcr
 


Transcriptional Regulation      
Display Regulation             
Activated by: MarA, FNR, Cra, OxyR, SoxS, NarL, NarP
Repressed by: NsrR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Baez A., Flores N., Bolivar F., Ramirez OT., 2009, Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations., Biotechnol Bioeng 104(1):102-10

 [2] Barassi CA., Kranz RG., Gennis RB., 1986, Characterization of monoclonal antibodies directed against pyruvate oxidase from Escherichia coli: modulation of antibody-induced inhibition by enzyme conformation., Biochem Biophys Res Commun 137(2):884-91

 [3] Causey TB., Shanmugam KT., Yomano LP., Ingram LO., 2004, Engineering Escherichia coli for efficient conversion of glucose to pyruvate., Proc Natl Acad Sci U S A 101(8):2235-40

 [4] Chang TF., Ruan KC., 2004, Exploration of pressure-induced dissociation of pyruvate oxidase., Cell Mol Biol (Noisy-le-grand) 50(4):323-8

 [5] Chang YY., Cronan JE., Li SJ., Reed K., Vanden Boom T., Wang AY., 1991, Locations of the lip, poxB, and ilvBN genes on the physical map of Escherichia coli., J Bacteriol 173(17):5258-9

 [6] De Mey M., Lequeux GJ., Beauprez JJ., Maertens J., Waegeman HJ., Van Bogaert IN., Foulquie-Moreno MR., Charlier D., Soetaert WK., Vanrolleghem PA., Vandamme EJ., 2010, Transient metabolic modeling of Escherichia coli MG1655 and MG1655 DeltaackA-pta, DeltapoxB Deltapppc ppc-p37 for recombinant beta-galactosidase production., J Ind Microbiol Biotechnol 37(8):793-803

 [7] Flores N., de Anda R., Flores S., Escalante A., Hernandez G., Martinez A., Ramirez OT., Gosset G., Bolivar F., 2004, Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system., J Mol Microbiol Biotechnol 8(4):209-21

 [8] Gonidakis S., Finkel SE., Longo VD., 2010, Genome-wide screen identifies Escherichia coli TCA-cycle-related mutants with extended chronological lifespan dependent on acetate metabolism and the hypoxia-inducible transcription factor ArcA., Aging Cell 9(5):868-81

 [9] Grabau C., Cronan JE., 1984, Molecular cloning of the gene (poxB) encoding the pyruvate oxidase of Escherichia coli, a lipid-activated enzyme., J Bacteriol 160(3):1088-92

 [10] Hubner G., Tittmann K., Killenberg-Jabs M., Schaffner J., Spinka M., Neef H., Kern D., Kern G., Schneider G., Wikner C., Ghisla S., 1998, Activation of thiamin diphosphate in enzymes., Biochim Biophys Acta 1385(2):221-8

 [11] Ito A., May T., Kawata K., Okabe S., 2008, Significance of rpoS during maturation of Escherichia coli biofilms., Biotechnol Bioeng 99(6):1462-71

 [12] Kang Z., Geng Y., Xia Yz., Kang J., Qi Q., 2009, Engineering Escherichia coli for an efficient aerobic fermentation platform., J Biotechnol 144(1):58-63

 [13] Lara AR., Leal L., Flores N., Gosset G., Bolivar F., Ramirez OT., 2006, Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system., Biotechnol Bioeng 93(2):372-85

 [14] Lelong C., Aguiluz K., Luche S., Kuhn L., Garin J., Rabilloud T., Geiselmann J., 2007, The Crl-RpoS regulon of Escherichia coli., Mol Cell Proteomics 6(4):648-59

 [15] Li M., Ho PY., Yao S., Shimizu K., 2006, Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments., J Biotechnol 122(2):254-66

 [16] Marschall C., Hengge-Aronis R., 1995, Regulatory characteristics and promoter analysis of csiE, a stationary phase-inducible gene under the control of sigma S and the cAMP-CRP complex in Escherichia coli., Mol Microbiol 18(1):175-84

 [17] Mather MW., Gennis RB., 1985, Spectroscopic studies of pyruvate oxidase flavoprotein from Escherichia coli trapped in the lipid-activated form by cross-linking., J Biol Chem 260(19):10395-7

 [18] Nakashima N., Ohno S., Yoshikawa K., Shimizu H., Tamura T., 2014, A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli., Appl Environ Microbiol 80(2):564-73

 [19] Ojima Y., Komaki M., Nishioka M., Iwatani S., Tsujimoto N., Taya M., 2009, Introduction of a stress-responsive gene, yggG, enhances the yield of L-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli., Biotechnol Lett 31(4):525-30

 [20] Sabido A., Sigala JC., Hernandez-Chavez G., Flores N., Gosset G., Bolivar F., 2014, Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized., Biotechnol Bioeng 111(6):1150-60

 [21] Sharma P., Hellingwerf KJ., de Mattos MJ., Bekker M., 2012, Uncoupling of substrate-level phosphorylation in Escherichia coli during glucose-limited growth., Appl Environ Microbiol 78(19):6908-13

 [22] Sigala JC., Flores S., Flores N., Aguilar C., de Anda R., Gosset G., Bolivar F., 2009, Acetate metabolism in Escherichia coli strains lacking phosphoenolpyruvate: carbohydrate phosphotransferase system; evidence of carbon recycling strategies and futile cycles., J Mol Microbiol Biotechnol 16(3-4):224-35

 [23] Son YJ., Phue JN., Trinh LB., Lee SJ., Shiloach J., 2011, The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth., Microb Cell Fact 10:52

 [24] Tomar A., Eiteman MA., Altman E., 2003, The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli., Appl Microbiol Biotechnol 62(1):76-82

 [25] Torchut E., Bourdillon C., Laval JM., 1994, Reconstitution of functional electron transfer between membrane biological elements in a two-dimensional lipidic structure at the electrode interface., Biosens Bioelectron 9(9-10):719-23

 [26] Torchut E., Bourdillon C., Laval JM., 1995, Reconstitution of a functional electron transfer in a biomimetic structure, including an electrode interface, phospholipid and ubiquinone molecules, and a membrane enzyme., Ann N Y Acad Sci 750:112-5

 [27] Williams FR., Hager LP., 1966, Crystalline flavin pyruvate oxidase from Escherichia coli. I. Isolation and properties of the flavoprotein., Arch Biochem Biophys 116(1):168-76

 [28] Wittmann C., Weber J., Betiku E., Kromer J., Bohm D., Rinas U., 2007, Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli., J Biotechnol 132(4):375-84

 [29] Zhu Y., Eiteman MA., Lee SA., Altman E., 2010, Conversion of glycerol to pyruvate by Escherichia coli using acetate- and acetate/glucose-limited fed-batch processes., J Ind Microbiol Biotechnol 37(3):307-12


RegulonDB