RegulonDB RegulonDB 10.8: Gene Form
   

pssA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

patZ pssA yfiM pssL kgtP yfiMp2 yfiMp2 TSS_2897 TSS_2897 pssAp pssAp TSS_2895 (cluster) TSS_2895 (cluster) pssAp4 pssAp4 TSS_2894 TSS_2894 TSS_2893 TSS_2893

Gene      
Name: pssA    Texpresso search in the literature
Synonym(s): ECK2583, EG10781, b2585, pss
Genome position(nucleotides): 2722727 --> 2724082 Genome Browser
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
48.89
External database links:  
ASAP:
ABE-0008510
CGSC:
355
ECHOBASE:
EB0774
OU-MICROARRAY:
b2585
PortEco:
pssA
STRING:
511145.b2585
COLOMBOS: pssA


Product      
Name: phosphatidylserine synthase
Synonym(s): Pss, PssA
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol,inner membrane
Molecular weight: 52.802
Isoelectric point: 9.311
Motif(s):
 
Type Positions Sequence
119 -> 154 VDVPVYGVPINTREALGVLHFKGFIIDDSVLYSGAS
4 -> 9 KFKRNK
309 -> 309 P
287 -> 288 LL
165 -> 167 KYR

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.6 - biosynthesis of macromolecules (cellular constituents) --> 1.6.1 - phospholipid
  6 - cell structure --> 6.1 - membrane
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
GO:0016020 - membrane
GO:0005886 - plasma membrane
molecular_function GO:0003824 - catalytic activity
GO:0005515 - protein binding
GO:0016740 - transferase activity
GO:0003882 - CDP-diacylglycerol-serine O-phosphatidyltransferase activity
GO:0008444 - CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase activity
GO:0005543 - phospholipid binding
biological_process GO:0006629 - lipid metabolic process
GO:0008654 - phospholipid biosynthetic process
GO:0032049 - cardiolipin biosynthetic process
Note(s): Note(s): ...[more].
Reference(s): [1] Aboulwafa M., et al., 2004
[2] Bulawa CE., et al., 1983
[3] Chamberlain BK., et al., 1978
[4] Dowhan W., et al., 1981
[5] Inoue K., et al., 1997
[6] Itou A., et al., 2012
[7] Jackson BJ., et al., 1986
[8] Kanfer J., et al., 1964
[9] Kobayashi T., et al., 1986
[10] Larson TJ., et al., 1976
[11] Ota A., et al., 1974
[12] Raetz CR. 1975
[13] Raetz CR., et al., 1977
[14] Saha SK., et al., 1996
[15] Saha SK., et al., 1996
[16] Shibuya I., et al., 1985
[17] Shibuya I., et al., 1985
[18] Sparrow CP., et al., 1984
External database links:  
DIP:
DIP-10593N
ECOCYC:
PHOSPHASERSYN-MONOMER
ECOLIWIKI:
b2585
INTERPRO:
IPR025202
INTERPRO:
IPR016270
INTERPRO:
IPR001736
MINT:
MINT-1218158
MODBASE:
P23830
PANTHER:
PTHR12586
PFAM:
PF13091
PRIDE:
P23830
PRODB:
PRO_000023620
PROSITE:
PS50035
REFSEQ:
NP_417080
SMART:
SM00155
SMR:
P23830
UNIPROT:
P23830


Operon      
Name: pssA         
Operon arrangement:
Transcription unit        Promoter
pssA


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_2893 2722287 forward nd [RS-EPT-CBR] [19]
  promoter TSS_2894 2722503 forward nd [RS-EPT-CBR] [19]
  promoter pssAp4 2722578 forward Similarity to the consensus
Read more >
[ICWHO] [20]
  promoter TSS_2895 (cluster) 2722625 forward For this promoter, there
Read more >
[RS-EPT-CBR] [19]
  promoter TSS_2897 2723828 forward nd [RS-EPT-CBR] [19]
  promoter yfiMp2 2724033 forward Similarity to the consensus
Read more >
[ICWHO] [20]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Aboulwafa M., Hvorup R., Saier MH., 2004, Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase., Arch Microbiol 181(1):26-34

 [2] Bulawa CE., Hermes JD., Raetz CR., 1983, Chloroform-soluble nucleotides in Escherichia coli. Role of CDP-diglyceride in the enzymatic cytidylylation of phosphomonoester acceptors., J Biol Chem 258(24):14974-80

 [3] Chamberlain BK., Webster RE., 1978, Effect of membrane-associated f1 bacteriophage coat protein upon the activity of Escherichia coli phosphatidylserine synthetase., J Bacteriol 135(3):883-7

 [4] Dowhan W., Larson T., 1981, Phosphatidylserine synthase from Escherichia coli., Methods Enzymol 71 Pt C:561-71

 [5] Inoue K., Matsuzaki H., Matsumoto K., Shibuya I., 1997, Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli., J Bacteriol 179(9):2872-8

 [6] Itou A., Matsumoto K., Hara H., 2012, Activation of the Cpx phosphorelay signal transduction system in acidic phospholipid-deficient pgsA mutant cells of Escherichia coli., Biochem Biophys Res Commun 421(2):296-300

 [7] Jackson BJ., Gennity JM., Kennedy EP., 1986, Regulation of the balanced synthesis of membrane phospholipids. Experimental test of models for regulation in Escherichia coli., J Biol Chem 261(29):13464-8

 [8] Kanfer J., Kennedy EP., 1964, Metabolism and function of bacterial lipids. II. Biosynthesis of phospholipids in Escherichia coli., J Biol Chem 239:1720-6

 [9] Kobayashi T., Ohta A., Shibuya I., 1986, Membrane phospholipid synthesis in Escherichia coli: alteration by glycerol and physiological consequences in a pss mutant., J Biochem 99(5):1393-400

 [10] Larson TJ., Dowhan W., 1976, Ribosomal-associated phosphatidylserine synthetase from Escherichia coli: purification by substrate-specific elution from phosphocellulose using cytidine 5'-diphospho-1,2-diacyl-sn-glycerol., Biochemistry 15(24):5212-8

 [11] Ota A., Shibuya I., Maruo B., Ishinaga M., Kito M., 1974, An extremely labile phosphatidylserine synthetase of an Escherichia coli mutant with the temperature-sensitive formation of phosphatidylethanolamine., Biochim Biophys Acta 348(3):449-54

 [12] Raetz CR., 1975, Isolation of Escherichia coli mutants defective in enzymes of membrane lipid synthesis., Proc Natl Acad Sci U S A 72(6):2274-8

 [13] Raetz CR., Foulds J., 1977, Envelope composition and antibiotic hypersensitivity of Escherichia coli mutants defective in phosphatidylserine synthetase., J Biol Chem 252(16):5911-5

 [14] Saha SK., Furukawa Y., Matsuzaki H., Shibuya I., Matsumoto K., 1996, Directed mutagenesis, Ser-56 to Pro, of Bacillus subtilis phosphatidylserine synthase drastically lowers enzymatic activity and relieves amplification toxicity in Escherichia coli., Biosci Biotechnol Biochem 60(4):630-3

 [15] Saha SK., Nishijima S., Matsuzaki H., Shibuya I., Matsumoto K., 1996, A regulatory mechanism for the balanced synthesis of membrane phospholipid species in Escherichia coli., Biosci Biotechnol Biochem 60(1):111-6

 [16] Shibuya I., Miyazaki C., Ohta A., 1985, Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli., J Bacteriol 161(3):1086-92

 [17] Shibuya I., Yamagoe S., Miyazaki C., Matsuzaki H., Ohta A., 1985, Biosynthesis of novel acidic phospholipid analogs in Escherichia coli., J Bacteriol 161(2):473-7

 [18] Sparrow CP., Ganong BR., Raetz CR., 1984, Escherichia coli membrane vesicles with elevated phosphatidic acid levels. A detergent-free system for in vitro phospholipid synthesis., Biochim Biophys Acta 796(3):373-83

 [19] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.

 [20] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78


RegulonDB