RegulonDB RegulonDB 10.9: Gene Form
   

rplV gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

rpsC rplV rpsS TSS_3805 TSS_3805 TSS_3804 TSS_3804 TSS_3803 TSS_3803 TSS_3802 TSS_3802 TSS_3801 TSS_3801 TSS_3800 (cluster) TSS_3800 (cluster) TSS_3799 TSS_3799 TSS_3798 TSS_3798 TSS_3797 TSS_3797 TSS_3796 TSS_3796 TSS_3795 TSS_3795 TSS_3794 TSS_3794 TSS_3793 TSS_3793 TSS_3792 TSS_3792 TSS_3791 TSS_3791 TSS_3790 (cluster) TSS_3790 (cluster) TSS_3789 TSS_3789 TSS_3788 TSS_3788 TSS_3787 (cluster) TSS_3787 (cluster) TSS_3786 TSS_3786

Gene      
Name: rplV    Texpresso search in the literature
Synonym(s): ECK3302, EG10882, b3315, eryB
Genome position(nucleotides): 3449901 <-- 3450233 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
49.85
External database links:  
ASAP:
ABE-0010850
CGSC:
245
ECHOBASE:
EB0875
ECOLIHUB:
rplV
OU-MICROARRAY:
b3315
STRING:
511145.b3315
COLOMBOS: rplV


Product      
Name: 50S ribosomal subunit protein L22
Synonym(s): EryB, RplV
Sequence: Get amino acid sequence Fasta Format
Cellular location: ribosome,cytosol
Molecular weight: 12.226
Isoelectric point: 10.979
Motif(s):
 
Type Positions Sequence
8 -> 8 R
5 -> 108 AKHRHARSSAQKVRLVADLIRGKKVSQALDILTYTNKKAAVLVKKVLESAIANAEHNDGADIDDLKVTKIFVDEGPSMKRIMPRAKGRADRILKRTSHITVVVS
91 -> 91 G
85 -> 95 IMPRAKGRADR
82 -> 84 MKR

 

Classification:
Multifun Terms (GenProtEC)  
  2 - information transfer --> 2.3 - protein related --> 2.3.2 - translation
  2 - information transfer --> 2.3 - protein related --> 2.3.8 - ribosomal proteins
  6 - cell structure --> 6.6 - ribosomes
Gene Ontology Terms (GO)  
cellular_component GO:0042788 - polysomal ribosome
GO:0005829 - cytosol
GO:0005840 - ribosome
GO:0015934 - large ribosomal subunit
GO:0022625 - cytosolic large ribosomal subunit
molecular_function GO:0003735 - structural constituent of ribosome
GO:0005515 - protein binding
GO:0003723 - RNA binding
GO:0019843 - rRNA binding
GO:0070180 - large ribosomal subunit rRNA binding
biological_process GO:1902626 - assembly of large subunit precursor of preribosome
GO:0006412 - translation
GO:0042255 - ribosome assembly
GO:0042256 - mature ribosome assembly
GO:0046677 - response to antibiotic
Note(s): Note(s): ...[more].
Reference(s): [1] Adachi K., et al., 1979
[2] Amarantos I., et al., 2001
[3] Bernabeu C., et al., 1978
[4] Bhakta S., et al., 2019
[5] Brown ME., et al., 1974
[6] Champney WS. 1980
[7] Cruz-Vera LR., et al., 2007
[8] Cruz-Vera LR., et al., 2005
[9] Diner EJ., et al., 2009
[10] Gomes C., et al., 2013
[11] Gomes C., et al., 2019
[12] Gongadze GM., et al., 1986
[13] Huang SC., et al., 1990
[14] Isono K., et al., 1976
[15] Jaskunas SR., et al., 1977
[16] Kostopoulou ON., et al., 2012
[17] Krassnigg F., et al., 1978
[18] Lawrence MG., et al., 2016
[19] Lindahl L., et al., 1979
[20] Lovmar M., et al., 2009
[21] Matspalu E., et al., 1982
[22] Metspalu E., et al., 1982
[23] Moore SD., et al., 2008
[24] Morrison CA., et al., 1977
[25] Pardo D., et al., 1977
[26] Pardo D., et al., 1979
[27] Peterson JH., et al., 2010
[28] Seidelt B., et al., 2009
[29] Soung GY., et al., 2009
[30] Sykes MT., et al., 2010
[31] Tischendorf GW., et al., 1974
[32] Travin DY., et al., 2019
[33] Walleczek J., et al., 1988
[34] Wittmann-Liebold B., et al., 1980
[35] Yap MN., et al., 2013
[36] Zurawski G., et al., 1985
External database links:  
DIP:
DIP-35983N
ECOCYC:
EG10882-MONOMER
ECOLIWIKI:
b3315
INTERPRO:
IPR001063
INTERPRO:
IPR005727
INTERPRO:
IPR036394
INTERPRO:
IPR018260
MODBASE:
P61175
PANTHER:
PTHR13501
PDB:
2J28
PDB:
2RDO
PDB:
3BBX
PDB:
3J5L
PDB:
3J7Z
PDB:
3J8G
PDB:
3J9Y
PDB:
3J9Z
PDB:
3JA1
PDB:
3JBU
PDB:
3JBV
PDB:
3JCD
PDB:
3JCE
PDB:
3JCJ
PDB:
3JCN
PDB:
4CSU
PDB:
4U1U
PDB:
4U1V
PDB:
4U20
PDB:
4U24
PDB:
4U25
PDB:
4U26
PDB:
4U27
PDB:
4UY8
PDB:
4V47
PDB:
4V48
PDB:
4V4H
PDB:
4V4Q
PDB:
4V4V
PDB:
4V4W
PDB:
4V50
PDB:
4V52
PDB:
4V53
PDB:
4V54
PDB:
4V55
PDB:
4V56
PDB:
4V57
PDB:
4V5B
PDB:
4V5H
PDB:
4V5Y
PDB:
4V64
PDB:
4V65
PDB:
4V66
PDB:
4V69
PDB:
4V6C
PDB:
4V6D
PDB:
4V6E
PDB:
4V6K
PDB:
4V6L
PDB:
4V6M
PDB:
4V6N
PDB:
4V6O
PDB:
4V6P
PDB:
4V6Q
PDB:
4V6R
PDB:
4V6S
PDB:
4V6T
PDB:
4V6V
PDB:
4V6Y
PDB:
4V6Z
PDB:
4V70
PDB:
4V71
PDB:
4V72
PDB:
4V73
PDB:
4V74
PDB:
4V75
PDB:
4V76
PDB:
4V77
PDB:
4V78
PDB:
4V79
PDB:
4V7A
PDB:
4V7B
PDB:
4V7C
PDB:
4V7D
PDB:
4V7I
PDB:
4V7S
PDB:
4V7T
PDB:
4V7U
PDB:
4V7V
PDB:
4V85
PDB:
4V89
PDB:
4V9C
PDB:
4V9D
PDB:
4V9O
PDB:
4V9P
PDB:
4WF1
PDB:
4WOI
PDB:
4WWW
PDB:
4YBB
PDB:
5ADY
PDB:
5AFI
PDB:
5AKA
PDB:
5GAD
PDB:
5GAE
PDB:
5GAF
PDB:
5GAG
PDB:
5GAH
PDB:
5H5U
PDB:
5IQR
PDB:
5IT8
PDB:
5J5B
PDB:
5J7L
PDB:
5J88
PDB:
5J8A
PDB:
5J91
PDB:
5JC9
PDB:
5JTE
PDB:
5JU8
PDB:
5KCR
PDB:
5KCS
PDB:
5KPS
PDB:
5KPV
PDB:
5KPW
PDB:
5KPX
PDB:
5L3P
PDB:
5LZA
PDB:
5LZB
PDB:
5LZC
PDB:
5LZD
PDB:
5LZE
PDB:
5LZF
PDB:
5MDV
PDB:
5MDW
PDB:
5MDY
PDB:
5MDZ
PDB:
5MGP
PDB:
5NCO
PDB:
5NP6
PDB:
5NWY
PDB:
5O2R
PDB:
5U4I
PDB:
5U9F
PDB:
5U9G
PDB:
5UYK
PDB:
5UYL
PDB:
5UYM
PDB:
5UYN
PDB:
5UYP
PDB:
5UYQ
PDB:
5WDT
PDB:
5WE4
PDB:
5WE6
PDB:
5WFK
PDB:
6BU8
PDB:
6BY1
PDB:
6C4I
PDB:
6ENF
PDB:
6ENJ
PDB:
6ENU
PDB:
6GBZ
PDB:
6GC0
PDB:
6GC4
PDB:
6GC6
PDB:
6GC7
PDB:
6GC8
PDB:
6GWT
PDB:
6GXM
PDB:
6GXN
PDB:
6GXO
PDB:
6GXP
PDB:
6H4N
PDB:
6H58
PDB:
6HRM
PDB:
6I0Y
PDB:
6I7V
PDB:
6O9J
PDB:
6O9K
PDB:
6OFX
PDB:
6OG7
PDB:
6ORE
PDB:
6ORL
PDB:
6OST
PDB:
6OT3
PDB:
6OUO
PDB:
6Q98
PDB:
6Q9A
PDB:
6QUL
PDB:
6S0K
PDB:
6SZS
PDB:
6TBV
PDB:
6TC3
PFAM:
PF00237
PRIDE:
P61175
PRODB:
PRO_000023828
PROSITE:
PS00464
REFSEQ:
NP_417774
SMR:
P61175
UNIPROT:
P61175


Operon      
Name: rpsJ-rplCDWB-rpsS-rplV-rpsC-rplP-rpmC-rpsQ         
Operon arrangement:
Transcription unit        Promoter
rpsJ-rplCDWB-rpsS-rplV-rpsC-rplP-rpmC-rpsQ


Transcriptional Regulation      
Display Regulation             
Activated by: FNR
Repressed by: ArcA


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_3786 3449579 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3787 (cluster) 3449583 reverse For this promoter, there
Read more >
[RS-EPT-CBR] [37]
  promoter TSS_3788 3449717 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3789 3449721 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3790 (cluster) 3449728 reverse For this promoter, there
Read more >
[RS-EPT-CBR] [37]
  promoter TSS_3791 3449730 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3792 3449759 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3793 3449776 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3794 3449800 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3795 3449856 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3796 3449864 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3797 3449867 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3798 3449869 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3799 3449910 forward nd [RS-EPT-CBR] [37]
  promoter TSS_3800 (cluster) 3450252 reverse For this promoter, there
Read more >
[RS-EPT-CBR] [37]
  promoter TSS_3801 3450347 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3802 3450357 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3803 3450389 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3804 3450425 reverse nd [RS-EPT-CBR] [37]
  promoter TSS_3805 3450474 reverse nd [RS-EPT-CBR] [37]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Adachi K., Sells BH., 1979, The effect of magnesium starvation on the dissociation of ribosomal proteins from Escherichia coli K-12 ribosomes., Biochim Biophys Acta 563(1):163-70

 [2] Amarantos I., Xaplanteri MA., Choli-Papadopoulou T., Kalpaxis DL., 2001, Effects of two photoreactive spermine analogues on peptide bond formation and their application for labeling proteins in Escherichia coli functional ribosomal complexes., Biochemistry 40(25):7641-50

 [3] Bernabeu C., Vazquez D., Ballesta JP., 1978, Proteins associated with rRNA in the Escherichia coli ribosome., Biochim Biophys Acta 518(2):290-7

 [4] Bhakta S., Akbar S., Sengupta J., 2019, Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit., J Mol Biol 431(7):1426-1439

 [5] Brown ME., Apirion D., 1974, Mapping a cluster of ribosomal genes in Escherichia coli., Mol Gen Genet 133(4):317-27

 [6] Champney WS., 1980, Protein synthesis defects in temperature-sensitive mutants of Escherichia coli with altered ribosomal proteins., Biochim Biophys Acta 609(3):464-74

 [7] Cruz-Vera LR., New A., Squires C., Yanofsky C., 2007, Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center., J Bacteriol 189(8):3140-6

 [8] Cruz-Vera LR., Rajagopal S., Squires C., Yanofsky C., 2005, Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression., Mol Cell 19(3):333-43

 [9] Diner EJ., Hayes CS., 2009, Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics., J Mol Biol 386(2):300-15

 [10] Gomes C., Martinez-Puchol S., Durand D., Lluque A., Mosquito S., Ochoa TJ., Ruiz J., 2013, Which mechanisms of azithromycin resistance are selected when efflux pumps are inhibited?, Int J Antimicrob Agents 42(4):307-11

 [11] Gomes C., Ruiz-Roldan L., Mateu J., Ochoa TJ., Ruiz J., 2019, Azithromycin resistance levels and mechanisms in Escherichia coli., Sci Rep 9(1):6089

 [12] Gongadze GM., Selivanova OM., Gudkov AT., Vasiliev VD., 1986, Structure of protein-deficient 50 S ribosomal subunits. Nine core proteins induce the compact conformation of 23 S ribosomal RNA., FEBS Lett 197(1-2):74-8

 [13] Huang SC., Panagiotidis CA., Canellakis ES., 1990, Transcriptional effects of polyamines on ribosomal proteins and on polyamine-synthesizing enzymes in Escherichia coli., Proc Natl Acad Sci U S A 87(9):3464-8

 [14] Isono K., Krauss J., Hirota Y., 1976, Isolation and characterization of temperature-sensitive mutants of Escherichia coli with altered ribosomal proteins., Mol Gen Genet 149(3):297-302

 [15] Jaskunas SR., Fallon AM., Nomura M., 1977, Identification and organization of ribosomal protein genes of Escherichia coli carried by lambdafus2 transducing phage., J Biol Chem 252(20):7323-36

 [16] Kostopoulou ON., Petropoulos AD., Dinos GP., Choli-Papadopoulou T., Kalpaxis DL., 2012, Investigating the entire course of telithromycin binding to Escherichia coli ribosomes., Nucleic Acids Res 40(11):5078-87

 [17] Krassnigg F., Erdmann VA., Fasold H., 1978, The synthesis of a photoreactive puromycin analogue and its application for labeling proteins in the 50-S subunit of Escherichia coli ribosomes., Eur J Biochem 87(3):439-43

 [18] Lawrence MG., Shamsuzzaman M., Kondopaka M., Pascual C., Zengel JM., Lindahl L., 2016, The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation., Nucleic Acids Res 44(12):5798-810

 [19] Lindahl L., Zengel JM., 1979, Operon-specific regulation of ribosomal protein synthesis in Escherichia coli., Proc Natl Acad Sci U S A 76(12):6542-6

 [20] Lovmar M., Nilsson K., Lukk E., Vimberg V., Tenson T., Ehrenberg M., 2009, Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency., EMBO J 28(6):736-44

 [21] Matspalu E., Ustav M., Villems R., 1982, The properties of the tRNA . protein complex of the Escherichia coli ribosome. Interaction with tRNA, 5-S RNA and 30-S ribosomal subunit., Eur J Biochem 124(2):269-73

 [22] Metspalu E., Ustav M., Maimets T., Villems R., 1982, The composition and properties of the Escherichia coli 5-S RNA-protein complex., Eur J Biochem 121(2):383-9

 [23] Moore SD., Sauer RT., 2008, Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22., Proc Natl Acad Sci U S A 105(47):18261-6

 [24] Morrison CA., Tischendorf G., Stoffler G., Garrett RA., 1977, Accessibility of proteins in 50S ribosomal subunits of Escherichia coli to antibodies: an ultracentrifugation study., Mol Gen Genet 151(3):245-52

 [25] Pardo D., Rosset R., 1977, Properties of ribosomes from erythromycin resistant mutants of Escherichia coli., Mol Gen Genet 156(3):267-71

 [26] Pardo D., Vola C., Rosset R., 1979, Assembly of ribosomal subunits affected in a ribosomal mutant of E. coli having an altered L22 protein., Mol Gen Genet 174(1):53-8

 [27] Peterson JH., Woolhead CA., Bernstein HD., 2010, The conformation of a nascent polypeptide inside the ribosome tunnel affects protein targeting and protein folding., Mol Microbiol 78(1):203-17

 [28] Seidelt B., Innis CA., Wilson DN., Gartmann M., Armache JP., Villa E., Trabuco LG., Becker T., Mielke T., Schulten K., Steitz TA., Beckmann R., 2009, Structural insight into nascent polypeptide chain-mediated translational stalling., Science 326(5958):1412-5

 [29] Soung GY., Miller JL., Koc H., Koc EC., 2009, Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes., J Proteome Res 8(7):3390-402

 [30] Sykes MT., Sperling E., Chen SS., Williamson JR., 2010, Quantitation of the ribosomal protein autoregulatory network using mass spectrometry., Anal Chem 82(12):5038-45

 [31] Tischendorf GW., Zeichhardt H., Stoffler G., 1974, Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 5oS ribosomal subunit of Escherichia coli by immune electron microscopy., Mol Gen Genet 134(3):187-208

 [32] Travin DY., Watson ZL., Metelev M., Ward FR., Osterman IA., Khven IM., Khabibullina NF., Serebryakova M., Mergaert P., Polikanov YS., Cate JHD., Severinov K., 2019, Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition., Nat Commun 10(1):4563

 [33] Walleczek J., Schuler D., Stoffler-Meilicke M., Brimacombe R., Stoffler G., 1988, A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome., EMBO J 7(11):3571-6

 [34] Wittmann-Liebold B., Greuer B., 1980, Amino acid sequence of protein L22 from the large subunit of the Escherichia coli ribosome., FEBS Lett 121(1):105-12

 [35] Yap MN., Bernstein HD., 2013, Mutations in the Escherichia coli ribosomal protein L22 selectively suppress the expression of a secreted bacterial virulence factor., J Bacteriol 195(13):2991-9

 [36] Zurawski G., Zurawski SM., 1985, Structure of the Escherichia coli S10 ribosomal protein operon., Nucleic Acids Res 13(12):4521-6

 [37] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB