RegulonDB RegulonDB 10.6.3: Gene Form
   

xylA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

xylB xylA xylF Fis XylR XylR Fis Fis CRP XylR AraC XylR AraC anti-terminator terminator xylFp xylFp xylAp xylAp

Gene      
Name: xylA    Texpresso search in the literature
Synonym(s): ECK3554, EG11074, b3565
Genome position(nucleotides): 3729443 <-- 3730765 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
50.87
External database links:  
ASAP:
ABE-0011639
CGSC:
5
ECHOBASE:
EB1067
ECOCYC:
EG11074
ECOLIHUB:
xylA
OU-MICROARRAY:
b3565
REGULONDB:
b3565
STRING:
511145.b3565
M3D: xylA
COLOMBOS: xylA
PortEco: b3565


Product      
Name: xylose isomerase
Synonym(s): XylA
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 49.742
Isoelectric point: 6.109
Motif(s):
 
Type Positions Sequence
342 -> 342 V
299 -> 299 R
378 -> 378 E
169 -> 169 Q

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.1 - carbon utilization --> 1.1.1 - carbon compounds
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
molecular_function GO:0016853 - isomerase activity
GO:0046872 - metal ion binding
GO:0009045 - xylose isomerase activity
GO:0000287 - magnesium ion binding
GO:0042803 - protein homodimerization activity
biological_process GO:0005975 - carbohydrate metabolic process
GO:0042732 - D-xylose metabolic process
GO:0042843 - D-xylose catabolic process
Note(s): Note(s): ...[more].
Reference(s): [1] Ackerman RS., et al., 1974
[2] Alkim C., et al., 2015
[3] Batt CA., et al., 1986
[4] Chen X., et al., 2017
[5] David JD., et al., 1970
[6] Dien BS., et al., 2002
[7] Dmytruk OV., et al., 2008
[8] Eiteman MA., et al., 2008
[9] Eiteman MA., et al., 2009
[10] Hou YM., et al., 1990
[11] Huang JJ., et al., 1985
[12] Kaup B., et al., 2005
[13] Kawaguchi H., et al., 2006
[14] Kim SM., et al., 2015
[15] Maleszka R., et al., 1982
[16] Matsuoka Y., et al., 2013
[17] Meijnen JP., et al., 2008
[18] Rozanov AS., et al., 2009
[19] Sapunova LI., et al., 2006
[20] Sarthy AV., et al., 1987
[21] Stevis PE., et al., 1990
[22] Stevis PE., et al., 1987
[23] Tao H., et al., 2001
[24] Voronovsky AY., et al., 2005
[25] Wang X., et al., 2018
[26] Xia T., et al., 2012
External database links:  
DIP:
DIP-11149N
ECOCYC:
XYLISOM-MONOMER
ECOLIWIKI:
b3565
INTERPRO:
IPR013452
INTERPRO:
IPR036237
INTERPRO:
IPR001998
MINT:
P00944
MODBASE:
P00944
PANTHER:
PTHR32176:SF0
PRIDE:
P00944
PRINTS:
PR00688
PRODB:
PRO_000024240
PROSITE:
PS51415
PROTEINMODELPORTAL:
P00944
REFSEQ:
NP_418022
SMR:
P00944
SWISSMODEL:
P00944
UNIPROT:
P00944


Operon      
Name: xylAB         
Operon arrangement:
Transcription unit        Promoter
xylAB


Transcriptional Regulation      
Display Regulation             
Activated by: CRP, XylR
Repressed by: AraC


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Ackerman RS., Cozzarelli NR., Epstein W., 1974, Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12., J Bacteriol 119(2):357-62

 [2] Alkim C., Cam Y., Trichez D., Auriol C., Spina L., Vax A., Bartolo F., Besse P., Francois JM., Walther T., 2015, Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli., Microb Cell Fact 14:127

 [3] Batt CA., O'Neill E., Novak SR., Ko J., Sinskey A., 1986, Hyperexpression of Escherichia coli Xylose Isomerase., Biotechnol Prog 2(3):140-4

 [4] Chen X., Wang W., Xu J., Yuan Z., Yuan T., Zhang Y., Liang C., He M., Guo Y., 2017, Production of d-psicose from d-glucose by co-expression of d-psicose 3-epimerase and xylose isomerase., Enzyme Microb Technol 105:18-23

 [5] David JD., Wiesmeyer H., 1970, Control of xylose metabolism in Escherichia coli., Biochim Biophys Acta 201(3):497-9

 [6] Dien BS., Nichols NN., Bothast RJ., 2002, Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid., J Ind Microbiol Biotechnol 29(5):221-7

 [7] Dmytruk OV., Voronovsky AY., Abbas CA., Dmytruk KV., Ishchuk OP., Sibirny AA., 2008, Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha., FEMS Yeast Res 8(1):165-73

 [8] Eiteman MA., Lee SA., Altman E., 2008, A co-fermentation strategy to consume sugar mixtures effectively., J Biol Eng 2:3

 [9] Eiteman MA., Lee SA., Altman R., Altman E., 2009, A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose., Biotechnol Bioeng 102(3):822-7

 [10] Hou YM., Zhang QJ., Wang SJ., 1990, Sequence analysis of D-xylose isomerase gene from Escherichia coli., Chin J Biotechnol 6(4):269-77

 [11] Huang JJ., Ho NW., 1985, Cloning and expression of the Escherichia coli D-xylose isomerase gene in Bacillus subtilis., Biochem Biophys Res Commun 126(3):1154-60

 [12] Kaup B., Bringer-Meyer S., Sahm H., 2005, D: -Mannitol formation from D: -glucose in a whole-cell biotransformation with recombinant Escherichia coli., Appl Microbiol Biotechnol 69(4):397-403

 [13] Kawaguchi H., Vertes AA., Okino S., Inui M., Yukawa H., 2006, Engineering of a xylose metabolic pathway in Corynebacterium glutamicum., Appl Environ Microbiol 72(5):3418-28

 [14] Kim SM., Choi BY., Ryu YS., Jung SH., Park JM., Kim GH., Lee SK., 2015, Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli., Metab Eng 30:141-8

 [15] Maleszka R., Wang PY., Schneider H., 1982, A Col E1 hybrid plasmid containing Escherichia coli genes complementing d-xylose negative mutants of Escherichia coli and Salmonella typhimurium., Can J Biochem 60(2):144-51

 [16] Matsuoka Y., Shimizu K., 2013, Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation., J Biotechnol 168(2):155-73

 [17] Meijnen JP., de Winde JH., Ruijssenaars HJ., 2008, Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose., Appl Environ Microbiol 74(16):5031-7

 [18] Rozanov AS., Zagrebel'nyi SN., Beklemishchev AB., 2009, [Cloning of Escherichia coli K12 xylose isomerase (glucose isomerase) and studying the enzymatic properties of its expression product]., Prikl Biokhim Mikrobiol 45(1):38-44

 [19] Sapunova LI., Lobanok AG., Kazakevich IO., Shliakhotko EA., Evtushenkov AN., 2006, [Biosynthetic features and properties of xylose isomerases from Arthrobacter nicotianae, Escherichia coli, and Erwinia carotovota subsp. atroseptica]., Prikl Biokhim Mikrobiol 42(3):279-84

 [20] Sarthy AV., McConaughy BL., Lobo Z., Sundstrom JA., Furlong CE., Hall BD., 1987, Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae., Appl Environ Microbiol 53(9):1996-2000

 [21] Stevis PE., Ho NW., 1990, Inexpensive direct selection cloning system based on the xylA gene and MacConkey indicator plates., Biotechniques 9(6):703-4

 [22] Stevis PE., Ho NW., 1987, Positive selection vectors based on xylose utilization suppression., Gene 55(1):67-74

 [23] Tao H., Gonzalez R., Martinez A., Rodriguez M., Ingram LO., Preston JF., Shanmugam KT., 2001, Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation., J Bacteriol 183(10):2979-88

 [24] Voronovsky AY., Ryabova OB., Verba OV., Ishchuk OP., Dmytruk KV., Sibirny AA., 2005, Expression of xylA genes encoding xylose isomerases from Escherichia coli and Streptomyces coelicolor in the methylotrophic yeast Hansenula polymorpha., FEMS Yeast Res 5(11):1055-62

 [25] Wang X., Goh EB., Beller HR., 2018, Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production., Microb Cell Fact 17(1):12

 [26] Xia T., Eiteman MA., Altman E., 2012, Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains., Microb Cell Fact 11:77


RegulonDB