RegulonDB RegulonDB 10.7: Gene Form
   

cueO gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

gcd cueO yacC CueR TSS_265 TSS_265 TSS_264 TSS_264 TSS_263 (cluster) TSS_263 (cluster) cueOp cueOp yacCp yacCp

Gene      
Name: cueO    Texpresso search in the literature
Synonym(s): ECK0122, EG12318, b0123, yacK
Genome position(nucleotides): 137083 --> 138633 Genome Browser
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
54.67
External database links:  
ASAP:
ABE-0000430
ECHOBASE:
EB2223
OU-MICROARRAY:
b0123
PORTECO:
cueO
REGULONDB:
b0123
STRING:
511145.b0123
M3D: cueO
COLOMBOS: cueO
PortEco: b0123


Product      
Name: multicopper oxidase CueO
Synonym(s): CueO, MCO, YacK, cuprous oxidase / multicopper oxidase with role in copper homeostasis
Sequence: Get amino acid sequence Fasta Format
Cellular location: periplasmic space
Molecular weight: 56.556
Isoelectric point: 6.781
Motif(s):
 
Type Positions Sequence
500 -> 501 CH
304 -> 304 G
439 -> 439 D
441 -> 441 M
67 -> 163 WGYNGNLLGPAVKLQRGKAVTVDIYNQLTEETTLHWHGLEVPGEVDGGPQGIIPPGGKRSVTLNVDQPAATCWFHPHQHGKTGRQVAMGLAGLVVIE

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism
  5 - cell processes --> 5.5 - adaptations --> 5.5.6 - other (mechanical, nutritional, oxidative stress)
  5 - cell processes --> 5.6 - protection --> 5.6.2 - detoxification
Gene Ontology Terms (GO)  
cellular_component GO:0030288 - outer membrane-bounded periplasmic space
GO:0042597 - periplasmic space
molecular_function GO:0005507 - copper ion binding
GO:0046872 - metal ion binding
GO:0016491 - oxidoreductase activity
GO:0004322 - ferroxidase activity
GO:0016724 - oxidoreductase activity, oxidizing metal ions, oxygen as acceptor
GO:0016722 - oxidoreductase activity, oxidizing metal ions
GO:0016682 - oxidoreductase activity, acting on diphenols and related substances as donors, oxygen as acceptor
biological_process GO:0046688 - response to copper ion
GO:0055114 - oxidation-reduction process
GO:0010273 - detoxification of copper ion
Note(s): Note(s): ...[more].
Reference(s): [1] Akter M., et al., 2016
[2] Graubner W., et al., 2007
[3] Iwaki M., et al., 2010
[4] Kajikawa T., et al., 2012
[5] Kataoka K., et al., 2011
[6] Kataoka K., et al., 2013
[7] Kataoka K., et al., 2009
[8] Komori H., et al., 2013
[9] Lee SM., et al., 2002
[10] Li X., et al., 2007
[11] Merlin C., et al., 2002
[12] Sakurai T., et al., 2017
[13] Sana B., et al., 2019
[14] Ueki Y., et al., 2006
External database links:  
DIP:
DIP-11178N
ECOCYC:
EG12318-MONOMER
ECOLIWIKI:
b0123
INTERPRO:
IPR006311
INTERPRO:
IPR001117
INTERPRO:
IPR008972
INTERPRO:
IPR011706
INTERPRO:
IPR011707
INTERPRO:
IPR002355
MODBASE:
P36649
PDB:
3NSF
PDB:
3NSY
PDB:
3NT0
PDB:
3OD3
PDB:
3PAU
PDB:
3PAV
PDB:
3QQX
PDB:
3UAA
PDB:
3UAB
PDB:
3UAC
PDB:
3UAD
PDB:
3UAE
PDB:
4E9Q
PDB:
4E9R
PDB:
4E9S
PDB:
4E9T
PDB:
4EF3
PDB:
4HAK
PDB:
4HAL
PDB:
4NER
PDB:
5B7E
PDB:
5B7F
PDB:
5B7M
PDB:
5YS1
PDB:
5YS5
PDB:
6IM7
PDB:
6IM8
PDB:
6IM9
PDB:
3NSD
PDB:
3NSC
PDB:
2YXW
PDB:
2YXV
PDB:
2FQG
PDB:
2FQF
PDB:
2FQE
PDB:
2FQD
PDB:
1PF3
PDB:
1N68
PDB:
1KV7
PFAM:
PF07731
PFAM:
PF07732
PFAM:
PF00394
PRIDE:
P36649
PRODB:
PRO_000022347
PROSITE:
PS00080
PROSITE:
PS51318
PROTEINMODELPORTAL:
P36649
REFSEQ:
NP_414665
SMR:
P36649
UNIPROT:
P36649


Operon      
Name: cueO         
Operon arrangement:
Transcription unit        Promoter
cueO


Transcriptional Regulation      
Display Regulation             
Activated by: CueR


Regulation by small RNA    
  Display Regulation
small RNA ryhB


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_263 (cluster) 137048 forward For this promoter, there
Read more >
[RS-EPT-CBR] [15]
  promoter TSS_264 137069 forward nd [RS-EPT-CBR] [15]
  promoter TSS_265 137630 reverse nd [RS-EPT-CBR] [15]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Akter M., Inoue C., Komori H., Matsuda N., Sakurai T., Kataoka K., Higuchi Y., Shibata N., 2016, Biochemical, spectroscopic and X-ray structural analysis of deuterated multicopper oxidase CueO prepared from a new expression construct for neutron crystallography., Acta Crystallogr F Struct Biol Commun 72(Pt 10):788-794

 [2] Graubner W., Schierhorn A., Bruser T., 2007, DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone., J Biol Chem 282(10):7116-24

 [3] Iwaki M., Kataoka K., Kajino T., Sugiyama R., Morishita H., Sakurai T., 2010, ATR-FTIR study of the protonation states of the Glu residue in the multicopper oxidases, CueO and bilirubin oxidase., FEBS Lett 584(18):4027-31

 [4] Kajikawa T., Kataoka K., Sakurai T., 2012, Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities., Biochem Biophys Res Commun 422(1):152-6

 [5] Kataoka K., Hirota S., Maeda Y., Kogi H., Shinohara N., Sekimoto M., Sakurai T., 2011, Enhancement of laccase activity through the construction and breakdown of a hydrogen bond at the type I copper center in Escherichia coli CueO and the deletion mutant Δα5-7 CueO., Biochemistry 50(4):558-65

 [6] Kataoka K., Kogi H., Tsujimura S., Sakurai T., 2013, Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center., Biochem Biophys Res Commun 431(3):393-7

 [7] Kataoka K., Sugiyama R., Hirota S., Inoue M., Urata K., Minagawa Y., Seo D., Sakurai T., 2009, Four-electron reduction of dioxygen by a multicopper oxidase, CueO, and roles of Asp112 and Glu506 located adjacent to the trinuclear copper center., J Biol Chem 284(21):14405-13

 [8] Komori H., Kajikawa T., Kataoka K., Higuchi Y., Sakurai T., 2013, Crystal structure of the CueO mutants at Glu506, the key amino acid located in the proton transfer pathway for dioxygen reduction., Biochem Biophys Res Commun 438(4):686-90

 [9] Lee SM., Grass G., Rensing C., Barrett SR., Yates CJ., Stoyanov JV., Brown NL., 2002, The Pco proteins are involved in periplasmic copper handling in Escherichia coli., Biochem Biophys Res Commun 295(3):616-20

 [10] Li X., Wei Z., Zhang M., Peng X., Yu G., Teng M., Gong W., 2007, Crystal structures of E. coli laccase CueO at different copper concentrations., Biochem Biophys Res Commun 354(1):21-6

 [11] Merlin C., McAteer S., Masters M., 2002, Tools for characterization of Escherichia coli genes of unknown function., J Bacteriol 184(16):4573-81

 [12] Sakurai T., Yamamoto M., Ikeno S., Kataoka K., 2017, Amino acids located in the outer-sphere of the trinuclear copper center in a multicopper oxidase, CueO as the putative electron donor in the four-electron reduction of dioxygen., Biochim Biophys Acta Proteins Proteom 1865(8):997-1003

 [13] Sana B., Chee SMQ., Wongsantichon J., Raghavan S., Robinson RC., Ghadessy FJ., 2019, Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions., J Biol Chem

 [14] Ueki Y., Inoue M., Kurose S., Kataoka K., Sakurai T., 2006, Mutations at Asp112 adjacent to the trinuclear Cu center in CueO as the proton donor in the four-electron reduction of dioxygen., FEBS Lett 580(17):4069-72

 [15] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB