RegulonDB RegulonDB 10.8: Operon Form
   

copA operon and associated TUs in Escherichia coli K-12 genome




Operon      
Name: copA
This page displays every known transcription unit of this operon and their known regulation.


Transcription unit          
Name: copA
Gene(s): copA   Genome Browser M3D Gene expression COLOMBOS
Note(s): copA expression is reduced under Zn excess in a CueR-dependent way, causing a defect in Cu homeostasis and induction of cusCFBA, which encodes the secondary Cu detoxification system Xu Z,2019.
Evidence: [BTEI] Boundaries of transcription experimentally identified
[LTED] Length of transcript experimentally determined
Reference(s): [1] Drees SL., et al., 2017
[2] Outten FW., et al., 2000
Promoter
Name: copAp
+1: 511411
Sigma Factor: Sigma70 Sigmulon
Distance from start of the gene: 32
Sequence: acccgcctggtttattaatttcttgaccttccccttgctggaaggtttaacctttatcacAgccagtcaaaactgtcttaa
                       -35                      -10         +1                   
Note(s): The promoter copAp is induced by copper Petersen C,2000
Evidence: [CV(RS-EPT-CBR)]
[CV(TIM)]
[HIPP]
[RS-EPT-CBR]
[TIM]
Reference(s): [2] Outten FW., et al., 2000
[3] Petersen C., et al., 2000
[4] Salgado H, et al., 2012
[5] Stoyanov JV., et al., 2001
TF binding sites (TFBSs)
Type Transcription factor Function Promoter Binding Sites Growth Conditions Evidence (Confirmed, Strong, Weak) Reference(s)
LeftPos RightPos Central Rel-Pos Sequence
proximal CueR-Cu+1 activator copAp 511436 511435 -25.0 nd nd [APIORCISFBSCS], [BPP], [CV(GEA)], [CV(GEA)], [CV(GEA/SM)], [CV(SM)], [GEA], [SM] [2], [3], [5], [6], [7]
Note(s): 1The presence of Fe(III) provokes the dissociation of CueR from the DNA binding site upstream of copA Xu Z,2019.1The presence of Fe(III) provokes the dissociation of CueR from the DNA binding site upstream of copA Xu Z,2019.




Reference(s)    

 [1] Drees SL., Klinkert B., Helling S., Beyer DF., Marcus K., Narberhaus F., Lubben M., 2017, One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting in Escherichia coli., Mol Microbiol 106(4):635-645

 [2] Outten FW., Outten CE., Hale J., O'Halloran TV., 2000, Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR., J Biol Chem 275(40):31024-9

 [3] Petersen C., Moller LB., 2000, Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR., Gene 261(2):289-98

 [4] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.

 [5] Stoyanov JV., Hobman JL., Brown NL., 2001, CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA., Mol Microbiol 39(2):502-11

 [6] Xu Z., Wang P., Wang H., Yu ZH., Au-Yeung HY., Hirayama T., Sun H., Yan A., 2019, Zinc excess increases cellular demand for iron and decreases tolerance to copper in Escherichia coli., J Biol Chem 294(45):16978-16991

 [7] Yamamoto K., Ishihama A., 2005, Transcriptional response of Escherichia coli to external copper., Mol Microbiol 56(1):215-27


RegulonDB