RegulonDB RegulonDB 11.1:Regulon Page
   

CadC DNA-binding transcriptional activator

Synonyms: CadC
Summary:
CadC is a metal-sensitive transcriptional activator that regulates the expression of genes involved in cadaverine synthesis and excretion under low external pH and high concentrations of lysine [2, 3, 4]. Two binding sites for CadC, Cad1 and Cad2, have been determined in the cadBA operon. While Cad1 contains an inverted repeat sequence and has a preference for AT-rich regions [5], Cad2 lacks either an inverted repeat or a palindromic sequence. Both binding sites are necessary for cadBA activation. Under aerobic conditions, H-NS represses the cadBA operon. Upon binding to Cad1, CadC releases bound H-NS molecules, dissolving the H-NS repressor complex and allowing RNA polymerase binding. Transcription of cadBA is finally activated once a molecule of CadC binds to Cad2 [2]. CadC is an integral membrane protein that belongs to the ToxR-like family of transcriptional activators. It features a cytoplasmic DNA-binding N-terminal domain, a transmembrane domain, and a periplasmic C-terminal domain [2].
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
CadC Functional   nd nd nd
Evolutionary Family: OmpR
TFBs symmetry: inverted-repeat
Sensing class: External sensing using transported metabolites
Connectivity class: Local Regulator
Gene name: cadC
  Genome position: 4360396-4361934
  Length: 1539 bp / 512 aa
Operon name: cadC
TU(s) encoding the TF:
Transcription unit        Promoter
cadC
cadCp


Regulon       
Regulated gene(s) cadA, cadB, cadC
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
pH (1)
Porters (Uni-, Sym- and Antiporters) (1)
membrane (1)
amino acids (1)
Transcription related (1)
Read more >
Regulated operon(s) cadBA, cadC
First gene in the operon(s) cadB, cadC
Simple and complex regulons ArcA,CadC,GadE-RcsB,GadX,H-NS,Lrp,OmpR
CadC,FNR,H-NS,LeuO,MlrA,OmpR
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[CadC,+](2)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence LeftPos RightPos Evidence Confidence level (C: Confirmed, S: Strong, W: Weak) References
  CadC activator cadBp Sigma70 nd nd cadB, cadA nd nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS], [EXP-IDA-BINDING-OF-PURIFIED-PROTEINS] S [1], [2], [2], [3]
  CadC activator cadCp Sigma70 nd nd cadC nd nd [EXP-IEP-GENE-EXPRESSION-ANALYSIS] W [3]


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
Promoter-target gene evolutionary conservation




Reference(s)    

 [1] Brameyer S., Rosch TC., El Andari J., Hoyer E., Schwarz J., Graumann PL., Jung K., 2019, DNA-binding directs the localization of a membrane-integrated receptor of the ToxR family., Commun Biol 2:4

 [2] Kuper C., Jung K., 2005, CadC-mediated activation of the cadBA promoter in Escherichia coli., J Mol Microbiol Biotechnol 10(1):26-39

 [3] Watson N., Dunyak DS., Rosey EL., Slonczewski JL., Olson ER., 1992, Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH., J Bacteriol 174(2):530-40

 [4] Neely MN, Dell CL, Olson ER, 1994, Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon., J Bacteriol, 176(11):3278 10.1128/jb.176.11.3278-3285.1994

 [5] Schlundt A, Buchner S, Janowski R, Heydenreich T, Heermann R, Lassak J, Geerlof A, Stehle R, Niessing D, Jung K, Sattler M, 2017, Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator., Sci Rep, 7(1):1051 10.1038/s41598-017-01031-9

 [6] Buchner S, Schlundt A, Lassak J, Sattler M, Jung K, 2015, Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli., J Mol Biol, 427(15):2548 10.1016/j.jmb.2015.05.001

 [7] Martini L, Brameyer S, Hoyer E, Jung K, Gerland U, 2021, Dynamics of chromosomal target search by a membrane-integrated one-component receptor., PLoS Comput Biol, 17(2):e1008680 10.1371/journal.pcbi.1008680

 [8] Rauschmeier M, Schüppel V, Tetsch L, Jung K, 2014, New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli., J Mol Biol, 426(1):215 10.1016/j.jmb.2013.09.017

 [9] Tetsch L, Jung K, 2009, The regulatory interplay between membrane-integrated sensors and transport proteins in bacteria., Mol Microbiol, 73(6):982 10.1111/j.1365-2958.2009.06847.x

 [10] Tetsch L, Koller C, Dönhöfer A, Jung K, 2011, Detection and function of an intramolecular disulfide bond in the pH-responsive CadC of Escherichia coli., BMC Microbiol, 11(None):74 10.1186/1471-2180-11-74

 [11] Brameyer S, Hoyer E, Bibinger S, Burdack K, Lassak J, Jung K, 2020, Molecular design of a signaling system influences noise in protein abundance under acid stress in different ?-Proteobacteria., J Bacteriol, None(None):None 10.1128/JB.00121-20

 [12] Leyn SA, Zlamal JE, Kurnasov OV, Li X, Elane M, Myjak L, Godzik M, de Crecy A, Garcia-Alcalde F, Ebeling M, Osterman AL, 2021, Experimental evolution in morbidostat reveals converging genomic trajectories on the path to triclosan resistance., Microb Genom, 7(5):None 10.1099/mgen.0.000553



RegulonDB