RegulonDB RegulonDB 10.6.3:Regulon Page
   

SoxS DNA-binding transcriptional dual regulator

Synonyms: SoxS
Summary:
SoxS is a dual transcriptional activator and participates in the removal of superoxide and nitric oxide and protection from organic solvents and antibiotics [1, 5, 30, 34, 35, 36, 37] SoxS shares 49% identity with MarA and the N-terminal domain of Rob [38] These proteins activate a common set of about 50 target genes [8, 13, 39, 40] the marA/soxS/rob regulon, involved in antibiotic resistance [19, 41, 42] superoxide resistance [36, 43, 44] and tolerance to organic solvents [37, 45]and heavy metals [46] The activity of each protein is induced by different signals: the activity of Rob is increased with dipyridyl, bile salts, or decanoate [47, 48] and the activities of MarA and SoxS are increased by the aromatic weak acid salicylate [13]CITS:[27098660]|and by oxidative stress [34] respectively.
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence (Confirmed, Strong, Weak) References
SoxS Functional   [IE] [1], [2], [3], [4], [5], [6], [7]
Evolutionary Family: AraC/XylS
Connectivity class: Local Regulator
Gene name: soxS
  Genome position: 4277060-4277383
  Length: 324 bp / 107 aa
Operon name: soxS
TU(s) encoding the TF:
Transcription unit        Promoter
soxS
soxSp


Regulon       
Regulated gene(s) acnA, acrA, acrB, acrZ, aldA, decR, fldA, fldB, fpr, fumC, fur, inaA, marA, marB, marR, micF, nepI, nfo, nfsA, nfsB, ompN, pgi, poxB, pqiA, pqiB, pqiC, ptsG, ribA, rimK, rob, sodA, soxS, tolC, uof, waaY, waaZ, ybjC, ybjN, ydbK, ygiB, ygiC, yrbL, zinT, zwf
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
membrane (8)
drug resistance/sensitivity (7)
Transcription related (6)
activator (5)
repressor (5)
Read more >
Regulated operon(s) acrAB, acrZ, aldA, decR, fldA-uof-fur, fldB, fpr, fumAC, hcp-hcr-poxB-ltaE-ybjT, inaA, marRAB, micF, nepI, nfo, nfsB, pgi, pqiABC, ptsG, ribA, rirA-waaQGPSBOJYZU, rob, sodA, soxS, tolC-ygiBC, ybjC-nfsA-rimK-ybjN, ydbK-ompN, ymiC-acnA, yrbL, zinT, zwf
First gene in the operon(s) acnA, acrA, aldA, fldA, fldB, fpr, fumC, inaA, marR, micF, nepI, nfo, nfsB, pgi, poxB, pqiA, ptsG, waaY, ribA, rob, sodA, soxS, tolC, tolC, uof, ybjC, ydbK, ydbK, yrbL, zinT, zwf, decR, acrZ
Simple and complex regulons AcrR,CRP,CpxR,Cra,Fis,MarA,MarR,Rob,SoxS
AcrR,EnvR,MarA,MprA,PhoP,Rob,SoxS
AcrR,FNR,Fur,SoxR,SoxS
AcrR,H-NS,HU,IHF,Lrp,MarA,OmpR,Rob,SoxS
ArcA,CRP,Cra,FNR,MarA,Rob,SoxS
Read more >
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[SoxS,+](30)
[SoxS,-](2)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence
LeftPos RightPos Growth Conditions Evidence (Confirmed, Strong, Weak) References
  SoxS activator acnAp2 Sigma70 -51.5 -101.0 acnA
aaggtttctcCTCTTTTATCAATTTGGGTTGttatcaaatc
1335720 1335740 nd [BPP], , [GEA], [HIBSCS], [IHBCE], [8], [9], [10]
  SoxS activator acrAp Sigma70 -72.5 -151.5 acrA, acrB
ttgcgcttctTGTTTGGTTTTTCGTGCCATatgttcgtga
485761 485780 nd [BPP], , [GEA], [HIBSCS], [IHBCE], [9], [10], [11]
  SoxS activator acrZp Sigma70 -40.5 -62.5 acrZ
cgcaaagctgACCGCACAAAAGGGGAGTGCttttctgtgc
794701 794720 nd [GEA], [IHBCE] [12]
  SoxS activator aldAp Sigma70 -161.0 -203.5 aldA
gcgatggaaaGTCGCTCGTTACGTTAAAAAttgcccgttt
1488019 1488038 nd [AIBSCS], [GEA] [8]
  SoxS activator decRp Sigma70 -63.0 -94.5 decR
tttgcgttgaATTTGTCATTTTGTGCCGTGgtgtttaaac
468279 468298 nd , [IHBCE], [10]
  SoxS activator fldAp nd -61.5 -117.5 fldA, uof, fur
ttccactttcATGTAGCACAGTGTGCAGTCctgctcgttt
711573 711592 nd [BPP], , [GEA], [HIBSCS], [IHBCE], [10], [11], [13], [14]
  SoxS activator fldBp Sigma70 -49.0 -82.5 fldB
ttatggtcacTCATTTGATCCATTATGCCTtattgtgccg
3039763 3039782 nd [GEA], [HIBSCS] [15]
  SoxS activator fldBp Sigma70 -38.0 -71.0 fldB
catttgatccATTATGCCTTATTGTGCCGTGactaaagcga
3039774 3039794 nd [GEA], [HIBSCS] [8], [15]
  SoxS activator fprp Sigma70 -56.5 -83.5 fpr
cctctgattgATTTGATCGATTGAGCCTTCcagtccttcg
4114546 4114565 nd [BPP], , [GEA], [HIBSCS], [IHBCE], [9], [10], [11], [13], [16]
  SoxS activator fumCp Sigma38 19.5 -102.5 fumC
ggtttttttaCATGGCACGAAAGACCAAACatttgttatc
1686681 1686700 nd [BPP], , [CHIP-SV], [GEA], [IHBCE], [MSI], [10], [13], [16], [17], [18]
  SoxS activator inaAp Sigma70 -41.5 -68.5 inaA
attcattaatACGACACGTTTCATTAAGATtttcctcagg
2349531 2349550 nd [BPP], [GEA], [HIBSCS] [9], [11], [13]
  SoxS activator marRp Sigma70 -61.5 -88.5 marR, marA, marB
acttgaaccgATTTAGCAAAACGTGGCATCggtcaattca
1619022 1619041 nd [BPP], [GEA], [HIBSCS] [9], [11], [19]
  SoxS activator micFp Sigma38, Sigma70 -119.5 -119.5 micF
aagattattgCGGAATGGCGAAATAAGCACctaacatcaa
2312955 2312974 nd [BCE], [BPP], , [IHBCE], [5], [10], [20]
  SoxS activator micFp Sigma38, Sigma70 -38.5 -38.5 micF
gtatttgacaGCACTGAATGTCAAAACAAAaccttcactc
2313036 2313055 nd [BCE], [BPP], , [IHBCE], [5], [10], [20]
  SoxS activator nepIp nd 6.0 -26.5 nepI
gttaaagtggTCGGCTTTTCCCCTGAAACAtgccacgggt
3841756 3841775 nd , [IHBCE], [10]
  SoxS activator nfop Sigma70 -37.0 -71.5 nfo
caaagcgtcaTCGCATAAACCACTACATCTtgctcctgtt
2250759 2250778 nd [BCE], [GEA], [HIBSCS] [4], [5], [11], [21]
  SoxS activator nfop Sigma70 -26.0 -60.5 nfo
cgcataaaccACTACATCTTGCTCCTGTTAacccgctatc
2250770 2250789 nd , [IHBCE], [10]
  SoxS activator nfsBp Sigma70 -43.5 -73.0 nfsB
agcggaaatcTATAGCGCATTTTTCTCGCTTaccatttctc
605487 605507 nd [BPP], [GEA], [HIBSCS] [8], [9]
  SoxS activator pgip Sigma70, Sigma38 -39.5 -75.0 pgi
cattacgctaACGGCACTAAAACCATCACATttttctgtga
4233673 4233693 nd [GEA], [HIBSCS] [8], [22]
  SoxS activator poxBp Sigma38, Sigma70 -60.5 -87.5 poxB
ttcatcgggcTATTTAACCGTTAGTGCCTCctttctctcc
911127 911146 nd [GEA], [HIBSCS] [11]
  SoxS activator pqiAp1 Sigma70, Sigma38 -40.0 -375.5 pqiA, pqiB, pqiC
ccgcggcaaaAGCAGAAACTGTAAAACGCAgcagtagcaa
1011616 1011635 nd [BPP], [GEA], [HIBSCS], [SM] [11], [23]
  SoxS activator ptsGp1 nd -83.5 -186.0 ptsG
ttgtgacataTGTTTTGTCAAAATGTGCAACttctccaatg
1157673 1157693 nd [BPP], [GEA], [HIBSCS] [22]
  SoxS activator ribAp1 Sigma70 -69.0 -98.5 ribA
aggaaaaattGACAGATTTGTGCCATTCCGtgaacgatcg
1339249 1339268 nd [BPP], , [GEA], [HIBSCS], [IHBCE], [10], [11], [24], [25]
  SoxS repressor robp nd -19.5 -62.5 rob
actgaatgctAAAACAGCAAAAAATGCTATtatccaatta
4635363 4635382 nd [BPP], [HIBSCS] [26]
  SoxS activator sodAp Sigma70 -44.0 -95.5 sodA
cccttacgaaAAGTACGGCATTGATAATCAttttcaatat
4100705 4100724 nd [BCE], [BPP], , [GEA], [HIBSCS], [IHBCE], [4], [9], [10], [13], [21]
  SoxS repressor soxSp Sigma70 3.0 -37.5 soxS
gaattatactCCCCAACAGATGAATTAACGaactgaacac
4277411 4277430 nd [BPP], , [GEA], [IHBCE], [6], [10]
  SoxS activator tolCp3 nd -40.5 -93.0 tolC, ygiB, ygiC
ttaacgccctATGGCACGTAACGCCAACCTTttgcggtagc
3178012 3178032 nd [AIBSCS], [GEA] [27], [28], [29]
  SoxS activator tolCp4 Sigma38 -52.5 -93.0 tolC, ygiB, ygiC
ttaacgccctATGGCACGTAACGCCAACCTTttgcggtagc
3178012 3178032 nd [AIBSCS], [GEA] [27], [28], [29]
  SoxS activator uofp nd -61.5 -165.5 uof, fur
tacgccgtatTAATAGATAATGCCAATCAAaataattgct
710881 710900 nd [BPP], , [IHBCE], [10], [14]
  SoxS activator waaYp Sigma70 -42.5 -213.5 waaY, waaZ
gcaactaaacCGTGGCACAAATGGGCAATTtatccatcgg
3801169 3801188 nd [BPP], [GEA], [HIBSCS] [30]
  SoxS activator ybjCp Sigma70 -56.5 -77.5 ybjC, nfsA, rimK, ybjN
ggtttaacctGTTGCATTAATTGCTAAAAGctataactgt
890826 890845 nd [BPP], , [GEA], [HIBSCS], [IHBCE], [9], [10], [17], [31]
  SoxS activator ybjCp Sigma70 -40.5 -61.5 ybjC, nfsA, rimK, ybjN
ttaattgctaAAAGCTATAACTGTTAAACAcaatacagtg
890842 890861 nd [BPP], [GEA], [HIBSCS] [8], [9]
  SoxS activator ydbKp nd -54.5 -101.5 ydbK, ompN
gctgatgtggGGGACACAAAAGCGAAAATGcagaagaaag
1440876 1440895 nd [BPP], [GEA], [HIBSCS], [SM] [32]
  SoxS activator ydbKp nd -50.5 -97.5 ydbK, ompN
atgtgggggaCACAAAAGCGAAAATGCAGAagaaagccat
1440872 1440891 nd [BPP], [GEA], [HIBSCS], [SM] [32]
  SoxS activator yrbLp nd -26.0 -57.5 yrbL
taagaggcatTGTTTAGGTTTTGTTTAAGTtaatcgacca
3348385 3348404 nd , [IHBCE], [10]
  SoxS activator zinTp Sigma70 nd nd zinT nd nd nd [GEA] [33]
  SoxS activator zwfp Sigma70 -51.5 -113.5 zwf
ttttcccgtaATCGCACGGGTGGATAAGCGtttacagttt
1936418 1936437 nd [BPP], , [GEA], [HIBSCS], [IHBCE], , [SM] [4], [9], [10], [11], [13], [21]



High-throughput Transcription factor binding sites (TFBSs)
      

  Functional conformation Function Object name Object type Distance to first Gene Sequence LeftPos RightPos Growth Condition Evidence (Confirmed, Strong, Weak) References
  SoxS activator ydbK gene -3618.0 1440878 1440895 [1] nd [10]
  SoxS activator ligA gene -2070.0 2530231 2530248 [1] nd [10]
  SoxS activator poxB gene -1686.0 911017 911034 [1] nd [10]
  SoxS activator fumC gene -1497.0 1686682 1686699 [1] nd [10]
  SoxS activator fur gene -490.0 710690 710707 [1] nd [10]
  SoxS activator fldA gene -462.0 711397 711414 [1] nd [10]
  SoxS activator yhjB gene -287.0 3672181 3672198 [1] nd [10]
  SoxS activator yhjB gene -277.0 3672171 3672188 [1] nd [10]
  SoxS activator ltaE gene -271.0 909565 909582 [1] nd [10]
  SoxS activator fur gene -239.0 710885 710902 [1] nd [10]
  SoxS activator fur gene -203.0 710849 710866 [1] nd [10]
  SoxS activator yhjB gene -170.0 3672064 3672081 [1] nd [10]
  SoxS activator mqsA gene -167.0 3168413 3168430 [1] nd [10]
  SoxS activator ligA gene -140.0 2530316 2530333 [1] nd [10]
  SoxS activator fur gene -117.0 710763 710780 [1] nd [10]
  SoxS activator fldA gene -109.0 711574 711591 [1] nd [10]
  SoxS activator mdtG gene -95.0 1115585 1115602 [1] nd [10]
  SoxS activator poxB gene -78.0 911127 911144 [1] nd [10]
  SoxS activator fpr gene -75.0 4114547 4114564 [1] nd [10]
  SoxS activator kdgT gene -60.0 4101750 4101767 [1] nd [10]
  SoxS activator znuB gene -38.0 1943452 1943469 [1] nd [10]
  SoxS activator yggX gene -16.0 3104109 3104126 [1] nd [10]
  SoxS activator ykgM gene 39.0 312738 312755 [1] nd [10]
  SoxS activator ltaE gene 41.0 909253 909270 [1] nd [10]
  SoxS activator fldB gene 79.0 3039776 3039793 [1] nd [10]
  SoxS activator nepI gene 88.0 3841651 3841668 [1] nd [10]
  SoxS activator decR gene 103.0 468280 468297 [1] nd [10]
  SoxS activator acnA gene 107.0 1335724 1335741 [1] nd [10]
  SoxS activator yggX gene 170.0 3103923 3103940 [1] nd [10]
  SoxS activator yggX gene 180.0 3103913 3103930 [1] nd [10]
  SoxS activator acrZ gene 221.0 794701 794718 [1] nd [10]
  SoxS activator znuB gene 249.0 1943165 1943182 [1] nd [10]
  SoxS activator yaiA gene 264.0 406906 406923 [1] nd [10]
  SoxS activator znuB gene 266.0 1943148 1943165 [1] nd [10]
  SoxS activator mltC gene 324.0 3104109 3104126 [1] nd [10]
  SoxS activator ybjC gene 358.0 890842 890859 [1] nd [10]
  SoxS activator ybjC gene 374.0 890826 890843 [1] nd [10]
  SoxS activator ybjC gene 479.0 890721 890738 [1] nd [10]
  SoxS activator yobH gene 536.0 1908628 1908645 [1] nd [10]
  SoxS activator ybjC gene 568.0 890632 890649 [1] nd [10]
  SoxS activator yrbL gene 637.0 3348447 3348464 [1] nd [10]
  SoxS activator sodA gene 721.0 4100709 4100726 [1] nd [10]
  SoxS activator nfo gene 939.0 2250758 2250775 [1] nd [10]
  SoxS activator kdgT gene 973.0 4101700 4101717 [1] nd [10]
  SoxS activator znuB gene 985.0 1943214 1943231 [1] nd [10]
  SoxS activator lpxC gene 994.0 106480 106497 [1] nd [10]
  SoxS activator nfsA gene 1064.0 890842 890859 [1] nd [10]
  SoxS activator nfsA gene 1080.0 890826 890843 [1] nd [10]
  SoxS activator yeiI gene 1242.0 2251546 2251563 [1] nd [10]
  SoxS activator ydeE gene 1291.0 1621228 1621245 [1] nd [10]
  SoxS repressor dctR gene 79.0 3654604 3654621 [1] nd [10]
  SoxS repressor metK gene 207.0 3086499 3086516 [1] nd [10]
  SoxS repressor dctR gene 628.0 3654585 3654602 [1] nd [10]
  SoxS repressor metK gene 1350.0 3086510 3086527 [1] nd [10]
  SoxS repressor metK gene 1430.0 3086430 3086447 [1] nd [10]
  SoxS activator nd nd nd 3303372 3303391 nd [AIBSCS], [GEA] [8]
  SoxS activator nd nd nd 189597 189616 nd [AIBSCS], [GEA] [8]
  SoxS activator nd nd nd 3172452 3172471 nd [AIBSCS], [GEA] [8]
Other High-throughput regulatory interactions with weak evidence


Growth Condition    

 [1] 

C: Escherichia coli str. K-12 substr. MG1655| wild type| M9 minimal medium| paraquat 0.25 mM; glucose 0.2%| mid exponential phase
E: Escherichia coli str. K-12 substr. MG1655| soxS knockout mutant| M9 minimal medium| paraquat 0.25 mM; glucose 0.2%| mid exponential phase



Alignment and PSSM for SoxS TFBSs    

Aligned TFBS of SoxS   
  Sequence
  GAATTTGTCATTTTGTGCCGTG
  ATGTTTGGTCTTTCGTGCCATG
  TTGTTTGGTTTTTCGTGCCATA
  CTATTTAACCGTTAGTGCCTCC
  TAAATTGCCCATTTGTGCCACG
  TGTTTTGACATTCAGTGCTGTC
  TGATTTGATCGATTGAGCCTTC
  GCTTTTAGCAATTAATGCAACA
  TCATTTGATCCATTATGCCTTA
  AAGGTTGGCGTTACGTGCCATA
  GCGTTTTACAGTTTCTGCTTTT
  CGATTTAGCAAAACGTGGCATC
  TGTTTTGTCAAAATGTGCAACT
  AGATGTAGTGGTTTATGCGATG
  AAATTGACAGATTTGTGCCATT
  TCTTTTATCAATTTGGGTTGTT
  GTGTTTAACAGTTATAGCTTTT
  GATAATAGCATTTTTTGCTGTT
  GCATTTTCGCTTTTGTGTCCCC
  ATTTTTAACGTAACGAGCGACT
  TCATGTAGCACAGTGTGCAGTC
  CGTATTAATAGATAATGCCAAT
  ATGTGATGGTTTTAGTGCCGTT
  AGCACTCCCCTTTTGTGCGGTC
  AATCTTAATGAAACGTGTCGTA
  ACGCTTATCCACCCGTGCGATT
  GAAAATGATTATCAATGCCGTA
  TTAATTCATCTGTTGGGGAGTA
  GTTAGGTGCTTATTTCGCCATT
  ATGTTTCAGGGGAAAAGCCGAC
  TCTATAGCGCATTTTTCTCGCT
  GCATTGTTTAGGTTTTGTTTAA

Position weight matrix (PWM). SoxS matrix-quality result   
A	10	7	13	8	2	2	13	12	1	12	10	9	6	8	6	4	0	0	4	13	3	8
C	3	9	1	2	1	0	3	5	17	10	2	1	3	7	1	1	1	25	18	1	7	8
G	9	7	8	1	4	3	11	10	4	6	8	3	1	0	20	2	31	2	4	12	0	4
T	10	9	10	21	25	27	5	5	10	4	12	19	22	17	5	25	0	5	6	6	22	12

Consensus   
;	consensus.strict             	gcattTggccttttGtGCcgtt
;	consensus.strict.rc          	AACGGCACAAAAGGCCAAATGC
;	consensus.IUPAC              	dsdttTrrymdttyGtGCcryy
;	consensus.IUPAC.rc           	RRYGGCACRAAHKRYYAAAHSH
;	consensus.regexp             	[agt][cg][agt]ttT[ag][ag][ct][ac][agt]tt[ct]GtGCc[ag][ct][ct]
;	consensus.regexp.rc          	[AG][AG][CT]GGCAC[AG]AA[ACT][GT][AG][CT][CT]AAA[ACT][CG][ACT]

PWM logo   


 


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
TF-target gene evolutionary conservation
Promoter-target gene evolutionary conservation


Evidence    

 [IE] Inferred from experiment

 [BPP] Binding of purified proteins

 [CEUMA] ChIP-exo evidence used in manual assertion

 [GEA] Gene expression analysis

 [HIBSCS] Human inference based on similarity to consensus sequences

 [IHBCE] Inferred by a human based on computational evidence

 [RE] RNA-seq evidence

 [AIBSCS] Automated inference based on similarity to consensus sequences

 [CHIP-SV] ChIP analysis and statistical validation of TFBSs

 [MSI] Mapping of signal intensities

 [BCE] Binding of cellular extracts

 [SM] Site mutation

 [CE] ChIP-exo evidence



Reference(s)    

 [1] Amabile-Cuevas CF., Demple B., 1991, Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon., Nucleic Acids Res 19(16):4479-84

 [2] Blattner FR., Burland V., Plunkett G., Sofia HJ., Daniels DL., 1993, Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes., Nucleic Acids Res 21(23):5408-17

 [3] Fawcett WP., Wolf RE., 1994, Purification of a MalE-SoxS fusion protein and identification of the control sites of Escherichia coli superoxide-inducible genes., Mol Microbiol 14(4):669-79

 [4] Fawcett WP., Wolf RE., 1995, Genetic definition of the Escherichia coli zwf "soxbox," the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide., J Bacteriol 177(7):1742-50

 [5] Li Z., Demple B., 1994, SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA., J Biol Chem 269(28):18371-7

 [6] Nunoshiba T., Hidalgo E., Li Z., Demple B., 1993, Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response., J Bacteriol 175(22):7492-4

 [7] Wu J., Weiss B., 1991, Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli., J Bacteriol 173(9):2864-71

 [8] Martin RG., Rosner JL., 2002, Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data., Mol Microbiol 44(6):1611-24

 [9] Martin RG., Rosner JL., 2011, Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli., J Bacteriol 193(2):506-15

 [10] Seo SW., Kim D., Szubin R., Palsson BO., 2015, Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655., Cell Rep 12(8):1289-99

 [11] Martin RG., Gillette WK., Rhee S., Rosner JL., 1999, Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter., Mol Microbiol 34(3):431-41

 [12] Hobbs EC., Yin X., Paul BJ., Astarita JL., Storz G., 2012, Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance., Proc Natl Acad Sci U S A 109(41):16696-701

 [13] Pomposiello PJ., Bennik MH., Demple B., 2001, Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate., J Bacteriol 183(13):3890-902

 [14] Zheng M., Doan B., Schneider TD., Storz G., 1999, OxyR and SoxRS regulation of fur., J Bacteriol 181(15):4639-43

 [15] Gaudu P., Weiss B., 2000, Flavodoxin mutants of Escherichia coli K-12., J Bacteriol 182(7):1788-93

 [16] Jair KW., Martin RG., Rosner JL., Fujita N., Ishihama A., Wolf RE., 1995, Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters., J Bacteriol 177(24):7100-4

 [17] Benov L., Fridovich I., 2002, Induction of the soxRS regulon of Escherichia coli by glycolaldehyde., Arch Biochem Biophys 407(1):45-8

 [18] Park SJ., Gunsalus RP., 1995, Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products., J Bacteriol 177(21):6255-62

 [19] Martin RG., Jair KW., Wolf RE., Rosner JL., 1996, Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli., J Bacteriol 178(8):2216-23

 [20] Delihas N., Forst S., 2001, MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors., J Mol Biol 313(1):1-12

 [21] Jair KW., Fawcett WP., Fujita N., Ishihama A., Wolf RE., 1996, Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes., Mol Microbiol 19(2):307-17

 [22] Rungrassamee W., Liu X., Pomposiello PJ., 2008, Activation of glucose transport under oxidative stress in Escherichia coli., Arch Microbiol 190(1):41-9

 [23] Koh YS., Roe JH., 1996, Dual regulation of the paraquat-inducible gene pqi-5 by SoxS and RpoS in Escherichia coli., Mol Microbiol 22(1):53-61

 [24] Koh YS., Choih J., Lee JH., Roe JH., 1996, Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli., Mol Gen Genet 251(5):591-8

 [25] Koh YS., Chung WH., Lee JH., Roe JH., 1999, The reversed SoxS-binding site upstream of the ribA promoter in Escherichia coli., Mol Gen Genet 261(2):374-80

 [26] Schneiders T., Levy SB., 2006, MarA mediated transcriptional repression of the rob promoter., J Biol Chem 281(15):10049-51

 [27] Aono R., Tsukagoshi N., Yamamoto M., 1998, Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12., J Bacteriol 180(4):938-44

 [28] Rodionov DA., Gelfand MS., Mironov AA., Rakhmaninova AB., 2001, Comparative approach to analysis of regulation in complete genomes: multidrug resistance systems in gamma-proteobacteria., J Mol Microbiol Biotechnol 3(2):319-24

 [29] Zhang A., Rosner JL., Martin RG., 2008, Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli., Mol Microbiol 69(6):1450-5

 [30] Lee JH., Lee KL., Yeo WS., Park SJ., Roe JH., 2009, SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli., J Bacteriol 191(13):4441-50

 [31] Paterson ES., Boucher SE., Lambert IB., 2002, Regulation of the nfsA Gene in Escherichia coli by SoxS., J Bacteriol 184(1):51-8

 [32] Nakayama T., Yonekura S., Yonei S., Zhang-Akiyama QM., 2013, Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress., Genes Genet Syst 88(3):175-88

 [33] Puskarova A., Ferianc P., Kormanec J., Homerova D., Farewell A., Nystrom T., 2002, Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli., Microbiology 148(Pt 12):3801-11

 [34] Demple B, 1996, Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon--a review., Gene, 1996 Nov 7

 [35] Semchyshyn H, Bagnyukova T, Lushchak V, 2005, Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide., Biochemistry (Mosc), 2005 Nov

 [36] Nunoshiba T., Hidalgo E., Amabile Cuevas CF., Demple B., 1992, Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene., J Bacteriol 174(19):6054-60

 [37] White DG, Goldman JD, Demple B, Levy SB, 1997, Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli., J Bacteriol, 1997 Oct

 [38] Cohen SP., Hachler H., Levy SB., 1993, Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli., J Bacteriol 175(5):1484-92

 [39] Barbosa TM, Levy SB, 2000, Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA., J Bacteriol, 2000 Jun

 [40] Martin RG, Rosner JL, 2003, Analysis of microarray data for the marA, soxS, and rob regulons of Escherichia coli., Methods Enzymol, 2003

 [41] Griffith KL, Becker SM, Wolf RE Jr, 2005, Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon., Mol Microbiol, 2005 May

 [42] Ariza RR., Li Z., Ringstad N., Demple B., 1995, Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein., J Bacteriol 177(7):1655-61

 [43] Jair KW., Yu X., Skarstad K., Thony B., Fujita N., Ishihama A., Wolf RE., 1996, Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication., J Bacteriol 178(9):2507-13

 [44] Wu J, Weiss B, 1992, Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli., J Bacteriol, 1992 Jun

 [45] Aono R, 1998, Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes., Extremophiles, 1998 Aug

 [46] Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R, 1995, Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli., Appl Environ Microbiol, 1995 Jun

 [47] Rosner JL, Dangi B, Gronenborn AM, Martin RG, 2002, Posttranscriptional activation of the transcriptional activator Rob by dipyridyl in Escherichia coli., J Bacteriol, 2002 Mar

 [48] Rosenberg EY., Bertenthal D., Nilles ML., Bertrand KP., Nikaido H., 2003, Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein., Mol Microbiol 48(6):1609-19

 [49] Molina-Quiroz RC, Loyola DE, Díaz-Vásquez WA, Arenas FA, Urzúa U, Pérez-Donoso JM, Vásquez CC, 2014, Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli., Res Microbiol, 2014 Sep

 [50] Pomposiello PJ., Koutsolioutsou A., Carrasco D., Demple B., 2003, SoxRS-regulated expression and genetic analysis of the yggX gene of Escherichia coli., J Bacteriol 185(22):6624-32

 [51] Wood TI., Griffith KL., Fawcett WP., Jair KW., Schneider TD., Wolf RE., 1999, Interdependence of the position and orientation of SoxS binding sites in the transcriptional activation of the class I subset of Escherichia coli superoxide-inducible promoters., Mol Microbiol 34(3):414-30

 [52] Kwon HJ., Bennik MH., Demple B., Ellenberger T., 2000, Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA., Nat Struct Biol 7(5):424-30

 [53] Dangi B., Pelupessey P., Martin RG., Rosner JL., Louis JM., Gronenborn AM., 2001, Structure and dynamics of MarA-DNA complexes: an NMR investigation., J Mol Biol 314(1):113-27

 [54] Griffith KL., Wolf RE., 2001, Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation., Mol Microbiol 40(5):1141-54

 [55] Griffith KL, Shah IM, Myers TE, O'Neill MC, Wolf RE Jr, 2002, Evidence for "pre-recruitment" as a new mechanism of transcription activation in Escherichia coli: the large excess of SoxS binding sites per cell relative to the number of SoxS molecules per cell., Biochem Biophys Res Commun, 2002 Mar 8

 [56] Martin RG, Gillette WK, Martin NI, Rosner JL, 2002, Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli., Mol Microbiol, 2002 Jan

 [57] Shah IM, Wolf RE Jr, 2004, Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress., J Mol Biol, 2004 Oct 22

 [58] Zafar MA, Shah IM, Wolf RE Jr, 2010, Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions., J Mol Biol, 2010 Aug 6

 [59] Zafar MA, Sanchez-Alberola N, Wolf RE Jr, 2011, Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the ?(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli., J Mol Biol, 2011 Apr 1

 [60] Gallegos MT., Schleif R., Bairoch A., Hofmann K., Ramos JL., 1997, Arac/XylS family of transcriptional regulators., Microbiol Mol Biol Rev 61(4):393-410

 [61] Griffith KL, Wolf RE Jr, 2002, A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation., J Mol Biol, 2002 Sep 13

 [62] Rhee S, Martin RG, Rosner JL, Davies DR, 1998, A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator., Proc Natl Acad Sci U S A, 1998 Sep 1

 [63] Gaudu P, Weiss B, 1996, SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form., Proc Natl Acad Sci U S A, 1996 Sep 17

 [64] Hidalgo E, Ding H, Demple B, 1997, Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator., Trends Biochem Sci, 1997 Jun

 [65] Griffith KL, Shah IM, Wolf RE Jr, 2004, Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons., Mol Microbiol, 2004 Mar

 [66] Shah IM, Wolf RE Jr, 2006, Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues., J Mol Biol, 2006 Mar 31

 [67] Graham AI., Sanguinetti G., Bramall N., McLeod CW., Poole RK., 2012, Dynamics of a starvation-to-surfeit shift: a transcriptomic and modelling analysis of the bacterial response to zinc reveals transient behaviour of the Fur and SoxS regulators., Microbiology 158(Pt 1):284-92

 [68] Thomas M, Benov L, 2018, The Contribution of Superoxide Radical to Cadmium Toxicity in E. coli., Biol Trace Elem Res, 2018 Feb

 [69] Wang A, Crowley DE, 2005, Global gene expression responses to cadmium toxicity in Escherichia coli., J Bacteriol, 2005 May

 [70] Poole RK, 2005, Nitric oxide and nitrosative stress tolerance in bacteria., Biochem Soc Trans, 2005 Feb

 [71] Touati D, 2000, Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS response?, Redox Rep, 2000

 [72] Cabiscol E, Tamarit J, Ros J, 2000, Oxidative stress in bacteria and protein damage by reactive oxygen species., Int Microbiol, 2000 Mar



RegulonDB