RegulonDB RegulonDB 9.4:Regulon Page

SoxS DNA-binding transcriptional dual regulator

Synonyms: SoxS
SoxS is a dual transcriptional activator and participates in the removal of superoxide and nitric oxide and protection from organic solvents and antibiotics [13, 25, 29, 30, 31, 32, 33]
SoxS shares 49% identity with MarA and the N-terminal domain of Rob [34] These proteins activate a common set of about 50 target genes [1, 5, 35, 36] the marA/soxS/rob regulon, involved in antibiotic resistance [11, 37, 38] superoxide resistance [31, 39, 40] and tolerance to organic solvents [33, 41]and heavy metals [42] The activity of each protein is induced by different signals: the activity of Rob is increased with dipyridyl, bile salts, or decanoate [43, 44] and the activities of MarA and SoxS are increased by the aromatic weak acid salicylate [5][45]nd by oxidative stress [29] respectively.
Read more >

Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence (Confirmed, Strong, Weak) References
SoxS     nd nd
Evolutionary Family: AraC/XylS
Connectivity class: Local Regulator
Gene name: soxS
  Genome position: 4277060-4277383
  Length: 324 bp / 107 aa
Operon name: soxS
TU(s) encoding the TF:
Transcription unit        Promoter

Regulated gene(s) acnA, acrA, acrB, acrZ, fldA, fldB, fpr, fumC, fur, inaA, marA, marB, marR, micF, nfo, nfsA, nfsB, ompN, pgi, poxB, pqiA, pqiB, ptsG, ribA, rimK, rob, sodA, soxS, tolC, uof, waaY, waaZ, ybjC, ybjN, ydbK, ygiA, ygiB, ygiC, zinT, zwf
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
drug resistance/sensitivity (7)
detoxification (5)
Transcription related (5)
membrane (4)
adaptations (4)
Read more >
Regulated operon(s) acnA, acrAB, acrZ, fldA-uof-fur, fldB, fpr, fumAC, inaA, marRAB, micF, nfo, nfsB, pgi, poxB-ltaE-ybjT, pqiAB, ptsG, ribA, rirA-waaQGPSBOJYZU, rob, sodA, soxS, tolC-ygiABC, ybjC-nfsA-rimK-ybjN, ydbK-ompN, zinT, zwf
First gene in the operon(s) acnA, acrA, acrZ, fldA, fldB, fpr, fumC, inaA, marR, micF, nfo, nfsB, pgi, poxB, pqiA, ptsG, ribA, rob, sodA, soxS, tolC, tolC, uof, waaY, ybjC, ydbK, ydbK, zinT, zwf
Simple and complex regulons AcrR,CRP,CpxR,Cra,Fis,MarA,MarR,Rob,SoxS
Read more >
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)

Transcription factor regulation    

Transcription factor binding sites (TFBSs) arrangements

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence
LeftPos RightPos Growth Conditions Evidence (Confirmed, Strong, Weak) References
  SoxS activator acnAp2 Sigma70 -51.5 -101.5 acnA
1335720 1335739 nd [BPP], [GEA], [HIBSCS] [1], [2]
  SoxS activator acrAp Sigma70 -72.5 -151.5 acrA, acrB
485761 485780 nd [BPP], [GEA], [HIBSCS] [2], [3]
  SoxS activator acrZp Sigma70 -40.5 -62.5 acrZ
794701 794720 nd [GEA], [IHBCE] [4]
  SoxS activator fldAp nd -61.5 -117.5 fldA, uof, fur
711573 711592 nd [BPP], [GEA], [HIBSCS] [3], [5], [6]
  SoxS activator fldBp Sigma70 -49.0 -82.5 fldB
3039763 3039782 [a] [GEA], [HIBSCS] [7]
  SoxS activator fldBp Sigma70 -38.0 -71.5 fldB
3039774 3039793 [a] [GEA], [HIBSCS] [1], [7]
  SoxS activator fprp Sigma70 -56.5 -83.5 fpr
4114546 4114565 [a] [BPP], [GEA], [HIBSCS] [2], [3], [5], [8]
  SoxS activator fumCp Sigma38 19.5 -102.5 fumC
1686681 1686700 [a] [BPP], [GEA] [5], [8], [9], [10]
  SoxS activator inaAp Sigma70 -41.5 -68.5 inaA
2349531 2349550 nd [BPP], [GEA], [HIBSCS] [2], [3], [5]
  SoxS activator marRp Sigma70 -61.5 -88.5 marR, marA, marB
1619022 1619041 [a] [BPP], [GEA], [HIBSCS] [2], [3], [11]
  SoxS activator micFp Sigma70 -119.5 -119.5 micF
2312955 2312974 [a] [BCE], [BPP] [12], [13]
  SoxS activator micFp Sigma70 -38.5 -38.5 micF
2313036 2313055 [a] [BCE], [BPP] [12], [13]
  SoxS activator nfop Sigma70 -37.0 -71.5 nfo
2250759 2250778 nd [BCE], [GEA], [HIBSCS] [3], [13], [14], [15]
  SoxS activator nfsBp Sigma70 -43.5 -72.5 nfsB
605487 605506 nd [BPP], [GEA], [HIBSCS] [1], [2]
  SoxS activator pgip Sigma70 -39.5 -75.5 pgi
4233673 4233692 [a] [GEA], [HIBSCS] [1], [16]
  SoxS activator poxBp Sigma38 -60.5 -87.5 poxB
911127 911146 nd [GEA], [HIBSCS] [3]
  SoxS activator pqiAp1 Sigma70 -40.0 -375.5 pqiA, pqiB
1011616 1011635 [a] [BPP], [GEA], [HIBSCS], [SM] [3], [17]
  SoxS activator ptsGp1 nd -83.5 -186.5 ptsG
1157673 1157692 [a] [BPP], [GEA], [HIBSCS] [16]
  SoxS activator ribAp1 Sigma70 -69.0 -98.5 ribA
1339249 1339268 [a] [BPP], [GEA], [HIBSCS] [3], [18], [19]
  SoxS repressor robp nd -19.5 -62.5 rob
4635363 4635382 nd [BPP], [HIBSCS] [20]
  SoxS activator sodAp Sigma70 -44.0 -95.5 sodA
4100705 4100724 [a] [BCE], [BPP], [GEA], [HIBSCS] [2], [5], [14], [15]
  SoxS repressor soxSp Sigma70 nd nd soxS nd nd nd [BPP], [GEA] [21]
  SoxS activator tolCp3 nd -40.5 -93.5 tolC, ygiA, ygiB, ygiC
3178012 3178031 nd [AIBSCS], [GEA] [22], [23], [24]
  SoxS activator tolCp4 Sigma38 -52.5 -93.5 tolC, ygiA, ygiB, ygiC
3178012 3178031 nd [AIBSCS], [GEA] [22], [23], [24]
  SoxS activator uofp nd -61.5 -165.5 uof, fur
710881 710900 nd [BPP] [6]
  SoxS activator waaYp Sigma70 -42.5 -213.5 waaY, waaZ
3801169 3801188 [a] [BPP], [GEA], [HIBSCS] [25]
  SoxS activator ybjCp Sigma70 -56.5 -77.5 ybjC, nfsA, rimK, ybjN
890826 890845 [a] [BPP], [GEA], [HIBSCS] [2], [9], [26]
  SoxS activator ybjCp Sigma70 -40.5 -61.5 ybjC, nfsA, rimK, ybjN
890842 890861 [a] [BPP], [GEA], [HIBSCS] [1], [2]
  SoxS activator ydbKp nd -54.5 -101.5 ydbK, ompN
1440876 1440895 nd [BPP], [GEA], [HIBSCS], [SM] [27]
  SoxS activator ydbKp nd -50.5 -97.5 ydbK, ompN
1440872 1440891 nd [BPP], [GEA], [HIBSCS], [SM] [27]
  SoxS activator zinTp Sigma70 nd nd zinT nd nd nd [GEA] [28]
  SoxS activator zwfp Sigma70 -51.5 -113.5 zwf
1936418 1936437 [a] [BPP], [GEA], [HIBSCS], [SM] [2], [3], [5], [14], [15]

Growth Condition    

 [a] with paraquat

Alignment and PSSM for SoxS TFBSs    

Position weight matrix (PWM).   
A	7	3	2	12	9	1	10	11	8	5	7	6	3	0	0	4	11	1
C	2	1	0	1	5	15	9	2	1	3	6	1	0	1	22	15	2	7
G	1	3	1	11	10	3	5	6	0	1	0	17	1	26	1	3	9	0
T	17	20	24	3	3	8	3	8	18	18	14	3	23	0	4	5	5	19

PWM logo   


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
TF-target gene evolutionary conservation
Promoter-target gene evolutionary conservation


 [BPP] Binding of purified proteins

 [GEA] Gene expression analysis

 [HIBSCS] Human inference based on similarity to consensus sequences

 [IHBCE] Inferred by a human based on computational evidence

 [BCE] Binding of cellular extracts

 [SM] Site mutation

 [AIBSCS] Automated inference based on similarity to consensus sequences


 [1] Martin RG., Rosner JL., 2002, Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data., Mol Microbiol. 44(6):1611-24

 [2] Martin RG., Rosner JL., 2011, Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli., J Bacteriol. 193(2):506-15

 [3] Martin RG., Gillette WK., Rhee S., Rosner JL., 1999, Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter., Mol Microbiol. 34(3):431-41

 [4] Hobbs EC., Yin X., Paul BJ., Astarita JL., Storz G., 2012, Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance., Proc Natl Acad Sci U S A. 109(41):16696-701

 [5] Pomposiello PJ., Bennik MH., Demple B., 2001, Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate., J Bacteriol. 183(13):3890-902

 [6] Zheng M., Doan B., Schneider TD., Storz G., 1999, OxyR and SoxRS regulation of fur., J Bacteriol. 181(15):4639-43

 [7] Gaudu P., Weiss B., 2000, Flavodoxin mutants of Escherichia coli K-12., J Bacteriol. 182(7):1788-93

 [8] Jair KW., Martin RG., Rosner JL., Fujita N., Ishihama A., Wolf RE., 1995, Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters., J Bacteriol. 177(24):7100-4

 [9] Benov L., Fridovich I., 2002, Induction of the soxRS regulon of Escherichia coli by glycolaldehyde., Arch Biochem Biophys. 407(1):45-8

 [10] Park SJ., Gunsalus RP., 1995, Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products., J Bacteriol. 177(21):6255-62

 [11] Martin RG., Jair KW., Wolf RE., Rosner JL., 1996, Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli., J Bacteriol. 178(8):2216-23

 [12] Delihas N., Forst S., 2001, MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors., J Mol Biol. 313(1):1-12

 [13] Li Z., Demple B., 1994, SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA., J Biol Chem. 269(28):18371-7

 [14] Fawcett WP., Wolf RE., 1995, Genetic definition of the Escherichia coli zwf soxbox, the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide., J Bacteriol. 177(7):1742-50

 [15] Jair KW., Fawcett WP., Fujita N., Ishihama A., Wolf RE., 1996, Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes., Mol Microbiol. 19(2):307-17

 [16] Rungrassamee W., Liu X., Pomposiello PJ., 2008, Activation of glucose transport under oxidative stress in Escherichia coli., Arch Microbiol. 190(1):41-9

 [17] Koh YS., Roe JH., 1996, Dual regulation of the paraquat-inducible gene pqi-5 by SoxS and RpoS in Escherichia coli., Mol Microbiol. 22(1):53-61

 [18] Koh YS., Choih J., Lee JH., Roe JH., 1996, Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli., Mol Gen Genet. 251(5):591-8

 [19] Koh YS., Chung WH., Lee JH., Roe JH., 1999, The reversed SoxS-binding site upstream of the ribA promoter in Escherichia coli., Mol Gen Genet. 261(2):374-80

 [20] Schneiders T., Levy SB., 2006, MarA mediated transcriptional repression of the rob promoter., J Biol Chem. 281(15):10049-51

 [21] Nunoshiba T., Hidalgo E., Li Z., Demple B., 1993, Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response., J Bacteriol. 175(22):7492-4

 [22] Aono R., Tsukagoshi N., Yamamoto M., 1998, Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12., J Bacteriol. 180(4):938-44

 [23] Rodionov DA., Gelfand MS., Mironov AA., Rakhmaninova AB., 2001, Comparative approach to analysis of regulation in complete genomes: multidrug resistance systems in gamma-proteobacteria., J Mol Microbiol Biotechnol. 3(2):319-24

 [24] Zhang A., Rosner JL., Martin RG., 2008, Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli., Mol Microbiol. 69(6):1450-5

 [25] Lee JH., Lee KL., Yeo WS., Park SJ., Roe JH., 2009, SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli., J Bacteriol. 191(13):4441-50

 [26] Paterson ES., Boucher SE., Lambert IB., 2002, Regulation of the nfsA Gene in Escherichia coli by SoxS., J Bacteriol. 184(1):51-8

 [27] Nakayama T., Yonekura S., Yonei S., Zhang-Akiyama QM., 2013, Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress., Genes Genet Syst. 88(3):175-88

 [28] Puskarova A., Ferianc P., Kormanec J., Homerova D., Farewell A., Nystrom T., 2002, Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli., Microbiology. 148(Pt 12):3801-11

 [29] Demple B., 1996, Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon--a review., Gene. 179(1):53-7

 [30] Semchyshyn H., Bagnyukova T., Lushchak V., 2005, Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide., Biochemistry (Mosc). 70(11):1238-44

 [31] Nunoshiba T., Hidalgo E., Amabile Cuevas CF., Demple B., 1992, Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene., J Bacteriol. 174(19):6054-60

 [32] Amabile-Cuevas CF., Demple B., 1991, Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon., Nucleic Acids Res. 19(16):4479-84

 [33] White DG., Goldman JD., Demple B., Levy SB., 1997, Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli., J Bacteriol. 179(19):6122-6

 [34] Cohen SP., Hachler H., Levy SB., 1993, Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli., J Bacteriol. 175(5):1484-92

 [35] Barbosa TM., Levy SB., 2000, Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA., J Bacteriol. 182(12):3467-74

 [36] Martin RG., Rosner JL., 2003, Analysis of microarray data for the marA, soxS, and rob regulons of Escherichia coli., Methods Enzymol. 370:278-80

 [37] Griffith KL., Becker SM., Wolf RE., 2005, Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon., Mol Microbiol. 56(4):1103-17

 [38] Ariza RR., Li Z., Ringstad N., Demple B., 1995, Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein., J Bacteriol. 177(7):1655-61

 [39] Jair KW., Yu X., Skarstad K., Thony B., Fujita N., Ishihama A., Wolf RE., 1996, Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication., J Bacteriol. 178(9):2507-13

 [40] Wu J., Weiss B., 1992, Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli., J Bacteriol. 174(12):3915-20

 [41] Aono R., 1998, Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes., Extremophiles. 2(3):239-48

 [42] Nakajima H., Kobayashi K., Kobayashi M., Asako H., Aono R., 1995, Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli., Appl Environ Microbiol. 61(6):2302-7

 [43] Rosner JL., Dangi B., Gronenborn AM., Martin RG., 2002, Posttranscriptional activation of the transcriptional activator Rob by dipyridyl in Escherichia coli., J Bacteriol. 184(5):1407-16

 [44] Rosenberg EY., Bertenthal D., Nilles ML., Bertrand KP., Nikaido H., 2003, Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein., Mol Microbiol. 48(6):1609-19

 [45] Jain K., Saini S., 2016, MarRA, SoxSR, and Rob encode a signal dependent regulatory network in Escherichia coli., Mol Biosyst

 [46] Molina-Quiroz RC., Loyola DE., Diaz-Vasquez WA., Arenas FA., Urzua U., Perez-Donoso JM., Vasquez CC., 2014, Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli., Res Microbiol. 165(7):566-70

 [47] Pomposiello PJ., Koutsolioutsou A., Carrasco D., Demple B., 2003, SoxRS-regulated expression and genetic analysis of the yggX gene of Escherichia coli., J Bacteriol. 185(22):6624-32

 [48] Wood TI., Griffith KL., Fawcett WP., Jair KW., Schneider TD., Wolf RE., 1999, Interdependence of the position and orientation of SoxS binding sites in the transcriptional activation of the class I subset of Escherichia coli superoxide-inducible promoters., Mol Microbiol. 34(3):414-30

 [49] Kwon HJ., Bennik MH., Demple B., Ellenberger T., 2000, Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA., Nat Struct Biol. 7(5):424-30

 [50] Dangi B., Pelupessey P., Martin RG., Rosner JL., Louis JM., Gronenborn AM., 2001, Structure and dynamics of MarA-DNA complexes: an NMR investigation., J Mol Biol. 314(1):113-27

 [51] Griffith KL., Wolf RE., 2001, Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation., Mol Microbiol. 40(5):1141-54

 [52] Griffith KL., Shah IM., Myers TE., O'Neill MC., Wolf RE., 2002, Evidence for pre-recruitment as a new mechanism of transcription activation in Escherichia coli: the large excess of SoxS binding sites per cell relative to the number of SoxS molecules per cell., Biochem Biophys Res Commun. 291(4):979-86

 [53] Martin RG., Gillette WK., Martin NI., Rosner JL., 2002, Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli., Mol Microbiol. 43(2):355-70

 [54] Shah IM., Wolf RE., 2004, Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress., J Mol Biol. 343(3):513-32

 [55] Zafar MA., Shah IM., Wolf RE., 2010, Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for off-DNA and on-DNA interactions., J Mol Biol. 401(1):13-32

 [56] Zafar MA., Sanchez-Alberola N., Wolf RE., 2010, Genetic Evidence for a Novel Interaction between Transcriptional Activator SoxS and Region 4 of the ??(70) Subunit of RNA Polymerase at Class II SoxS-Dependent Promoters in Escherichia coli., J Mol Biol

 [57] Gallegos MT., Schleif R., Bairoch A., Hofmann K., Ramos JL., 1997, Arac/XylS family of transcriptional regulators., Microbiol Mol Biol Rev. 61(4):393-410

 [58] Griffith KL., Wolf RE., 2002, A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation., J Mol Biol. 322(2):237-57

 [59] Rhee S., Martin RG., Rosner JL., Davies DR., 1998, A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator., Proc Natl Acad Sci U S A. 95(18):10413-8

 [60] Wu J., Weiss B., 1991, Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli., J Bacteriol. 173(9):2864-71

 [61] Gaudu P., Weiss B., 1996, SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form., Proc Natl Acad Sci U S A. 93(19):10094-8

 [62] Hidalgo E., Ding H., Demple B., 1997, Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator., Trends Biochem Sci. 22(6):207-10

 [63] Griffith KL., Shah IM., Wolf RE., 2004, Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons., Mol Microbiol. 51(6):1801-16

 [64] Shah IM., Wolf RE., 2006, Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues., J Mol Biol. 357(3):718-31

 [65] Graham AI., Sanguinetti G., Bramall N., McLeod CW., Poole RK., 2012, Dynamics of a starvation-to-surfeit shift: a transcriptomic and modelling analysis of the bacterial response to zinc reveals transient behaviour of the Fur and SoxS regulators., Microbiology. 158(Pt 1):284-92

 [66] Poole RK., 2005, Nitric oxide and nitrosative stress tolerance in bacteria., Biochem Soc Trans. 33(Pt 1):176-80

 [67] Touati D., 2000, Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS response?, Redox Rep. 5(5):287-93

 [68] Cabiscol E., Tamarit J., Ros J., 2000, Oxidative stress in bacteria and protein damage by reactive oxygen species., Int Microbiol. 3(1):3-8