RegulonDB RegulonDB 10.0:Regulon Page
   

CysB DNA-binding transcriptional dual regulator

Synonyms: CysB, CysB-O-acetyl-L-serine, CysB-N-acetyl-L-serine, CysB-Sulphide, CysB-Thiosulfate
Summary:
The transcription factor CysB, for "Cysteine B," is negatively autoregulated [7, 8] this regulator also controls the transcription of the operon involved in novobiocin resistance [8, 20]and transcription of genes involved in sulfur utilization and sulfonate-sulfur catabolism via cysteine biosynthesis [2, 7, 9, 11, 16, 17, 24] In the presense of N-acetylserine, the inducer molecule of this regulator, DNA binding by CysB tetramers to the target sequences is facilitated [8, 17] but the binding to the repressor site in the cysB regulatory region is prevented [14]. The amino acid sequence of CysB shows homology to members of the LysR family of transcriptional regulators [3, 6, 8] The N-terminal region of this protein comprises a helix-turn-helix DNA-binding motif.
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence (Confirmed, Strong, Weak) References
CysB Functional   nd [1], [2], [3], [4], [5], [6]
CysB-O-acetyl-L-serine Functional Allosteric Holo [APPH], [APPP], [GEA], [HIFS], [IDA], [IEP], [IMP] [3], [6], [7], [8], [9], [10], [11]
CysB-N-acetyl-L-serine Functional Allosteric Holo [IDA] [10]
CysB-Sulphide Non-Functional Allosteric Holo [IDA] [10]
CysB-Thiosulfate Non-Functional Allosteric Holo [IDA] [12]
Evolutionary Family: LysR
Sensing class: Sensing external and internal signals
Connectivity class: Local Regulator
Gene name: cysB
  Genome position: 1333855-1334829
  Length: 975 bp / 324 aa
Operon name: cysB
TU(s) encoding the TF:
Transcription unit        Promoter
cysB
cysBp


Regulon       
Regulated gene(s) cbl, cysA, cysB, cysC, cysD, cysH, cysI, cysJ, cysK, cysM, cysN, cysP, cysU, cysW, dgcZ, hslJ, ssuA, ssuB, ssuC, ssuD, ssuE, tauA, tauB, tauC, tauD, tcyJ, tcyP, ybdN, yciW, ygeH, yoaC
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
sulfur metabolism (18)
cysteine (4)
ABC superfamily, periplasmic binding component (4)
ABC superfamily, membrane component (4)
membrane (4)
Read more >
Regulated operon(s) cbl, cysB, cysDNC, cysJIH, cysK, cysPUWAM, dgcZ, fliAZ-tcyJ, hslJ, ssuEADCB, tauABCD, tcyP, ybdN, yciW, ygeH, yoaC
First gene in the operon(s) cbl, cysB, cysD, cysJ, cysK, cysP, dgcZ, hslJ, ssuE, tauA, tcyJ, tcyP, ybdN, yciW, ygeH, yoaC
Simple and complex regulons ArcA,CysB,FNR
Cbl,CysB
Cbl,CysB,FNR,IHF
CpxR,CysB
CysB
Read more >
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[CysB,+](10)
[CysB,-](3)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence LeftPos RightPos Evidence (Confirmed, Strong, Weak) References
  CysB-O-acetyl-L-serine activator cblp Sigma70 nd nd cbl nd nd [BPP], [GEA] [13]
  CysB repressor cysBp Sigma70 13.0 -55.5 cysB 1333800 1333799 [HIBSCS] [14]
  CysB-O-acetyl-L-serine activator cysDp Sigma70 -85.0 -123.5 cysD, cysN, cysC
agtagttcctTAACGGAATAACGATTTGGCAAAGCTAATATCAAAAAGTGCTtaaggcaccg
2876432 2876473 [BCE] [2], [15]
  CysB-O-acetyl-L-serine activator cysJp Sigma70 -55.0 -120.5 cysJ, cysI, cysH
gtgtggattaAAGACGGGATAGCGATAACTAATAACCAAATCGACTAACCTGttttagcaat
2891998 2892039 [HIBSCS] [16]
  CysB-O-acetyl-L-serine activator cysKp1 Sigma70 -79.0 -111.5 cysK
gtggcttatgCCGCCCCTTATTCCATCTTGCATGTCATTATTTCCCTTCTGTatatagatat
2532277 2532318 [HIBSCS], [SM] [16]
  CysB-O-acetyl-L-serine activator cysPp Sigma70 -65.0 -93.5 cysP, cysU, cysW, cysA, cysM
gagtaacggtTTTATATACCGTTTGGTGATTTGGAAGTTGAAAAGGGAATAAgaacttggtt
2543601 2543642 [BPP], [GEA] [9], [17], [18]
  CysB-O-acetyl-L-serine activator dgcZp Sigma70 -164.5 -194.0 dgcZ
tacctctgcaTTATCGTAAATAAAAGGATGACAAATAGCATAACCCAATACCctaatggccc
1624023 1624065 [AIBSCS] [19]
  CysB-O-acetyl-L-serine repressor hslJp Sigma70 -16.0 -52.5 hslJ
ctgactcaggACTATTTTAAGAATAGAGGATGAAAGGTCATTGGGGATTATCtgaatcagct
1441775 1441816 [AIBSCS], [BPP], [GEA] [8], [20]
  CysB-O-acetyl-L-serine repressor ssuEp Sigma70 -18.0 -68.5 ssuE, ssuA, ssuD, ssuC, ssuB
cattgataacAATTCGGTCAGTCTGTCGGAGAGACAAGAAAATTCCAAATATaaattttgtg
997560 997601 [BPP], [GEA] [21], [22]
  CysB-O-acetyl-L-serine activator tauAp nd -202.0 -229.5 tauA, tauB, tauC, tauD
aatataatagTTTTATTATATGTATTGATATTGATAGAAATAATGAAGTAATaaatctcgta
384982 385023 [BPP], [GEA] [11]
  CysB-O-acetyl-L-serine activator tauAp nd -93.0 -120.5 tauA, tauB, tauC, tauD
attgttagaaCGGAGTAATTGCATATTTAATCTTTCCTTAGCCGTTTTTTTGctaagaataa
385091 385132 [BPP], [GEA] [11]
  CysB-O-acetyl-L-serine activator tauAp nd -38.0 -65.5 tauA, tauB, tauC, tauD
agaataaaatCATCTGTGCGATAACGACTAATTCTTTTAATGAATGTTTTTAttcctgaata
385146 385187 [BPP], [GEA] [11]
  CysB activator tcyJp nd nd nd tcyJ nd nd [GEA] [23]
  CysB activator tcyPp nd nd nd tcyP nd nd [GEA] [23]
  CysB-O-acetyl-L-serine activator ybdNp Sigma70 -177.5 -295.0 ybdN
ttttaagttaAGAAAGTCACGGTAGGAATTATAAAGTTCATAGGGGACTATTcccagtaaat
636843 636885 [AIBSCS] [19]
  CysB-O-acetyl-L-serine activator yciWp Sigma70 -50.5 -76.0 yciW
cgggaaggggAGAAAGACGGATCGGCGATAACAAATATCAGAAAGGTATAACagagataacg
1350162 1350204 [AIBSCS], [GEA] [19]
  CysB-O-acetyl-L-serine activator ygeHp10 Sigma70 -573.5 -788.0 ygeH
cagaaacaatTGAAATATTCAATAATAGTGATGAATGGGCAAATCAACTAAAacacgcatta
2991285 2991327 [AIBSCS] [19]
  CysB-O-acetyl-L-serine activator yoaCp1 Sigma24 -145.5 -312.0 yoaC
agatattactGTTGATGCTTCTGCTAATTCATTATTTATATTTATAATTTCAattttatcta
1893800 1893842 [AIBSCS] [19]



High-throughput Transcription factor binding sites (TFBSs)
      

  Functional conformation Function Object name Object type Distance to first Gene Sequence LeftPos RightPos Evidence (Confirmed, Strong, Weak) References
  CysB-O-acetyl-L-serine activator yfbR nd nd 2407833 2407875 [ICWHO] nd
  CysB-O-acetyl-L-serine activator ariR nd nd 1216241 1216283 nd nd


Alignment and PSSM for CysB TFBSs    

Position weight matrix (PWM).   
A	2	2	9	4	1	3	2	9	2	1	2	1	2	5	7	8	1	0	4	6	3	2	9	0	0	4	2	3	7	5	2	2	4	2	4	8	0	3
C	1	0	2	1	1	5	7	2	1	2	2	2	4	3	2	2	0	0	7	3	2	2	0	1	7	3	10	4	4	4	4	6	4	0	0	4	1	0
G	0	1	2	5	3	2	2	0	0	0	3	5	7	0	0	0	2	2	0	4	0	0	1	0	2	3	0	0	1	0	3	2	2	7	1	0	0	0
T	11	11	1	4	9	4	3	3	11	11	7	6	1	6	5	4	11	12	3	1	9	10	4	13	5	4	2	7	2	5	5	4	4	5	9	2	13	11

PWM logo   


 


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
TF-target gene evolutionary conservation
Promoter-target gene evolutionary conservation


Evidence    

 [APPH] Assay of protein purified to homogeneity

 [APPP] Assay of partially-purified protein

 [GEA] Gene expression analysis

 [HIFS] Human inference of function from sequence

 [IDA] Inferred from direct assay

 [IEP] Inferred from expression pattern

 [IMP] Inferred from mutant phenotype

 [BPP] Binding of purified proteins

 [HIBSCS] Human inference based on similarity to consensus sequences

 [BCE] Binding of cellular extracts

 [SM] Site mutation

 [AIBSCS] Automated inference based on similarity to consensus sequences

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Bielinska A., Hulanicka D., 1986, Regulation of the cysB gene expression in Escherichia coli., Acta Biochim Pol 33(2):133-7

 [2] Kredich NM., 1992, The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli., Mol Microbiol 6(19):2747-53

 [3] Ostrowski J., Jagura-Burdzy G., Kredich NM., 1987, DNA sequences of the cysB regions of Salmonella typhimurium and Escherichia coli., J Biol Chem 262(13):5999-6005

 [4] Prodromou C., Artymiuk PJ., Guest JR., 1992, The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases., Eur J Biochem 204(2):599-609

 [5] Sargentini NJ., Gularte NP., Hudman DA., 2016, Screen for genes involved in radiation survival of Escherichia coli and construction of a reference database., Mutat Res 793-794:1-14

 [6] Tei H., Watanabe K., Murata K., Kimura A., 1990, Analysis of the Escherichia coli K-12 cysB gene and its product using the method of gene fusion., Biochem Biophys Res Commun 167(3):962-9

 [7] Jagura-Burdzy G., Hulanicka D., 1981, Use of gene fusions to study expression of cysB, the regulatory gene of the cysteine regulon., J Bacteriol 147(3):744-51

 [8] Jovanovic M., Lilic M., Savic DJ., Jovanovic G., 2003, The LysR-type transcriptional regulator CysB controls the repression of hslJ transcription in Escherichia coli., Microbiology 149(Pt 12):3449-59

 [9] Lochowska A., Iwanicka-Nowicka R., Zaim J., Witkowska-Zimny M., Bolewska K., Hryniewicz MM., 2004, Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter., Mol Microbiol 53(3):791-806

 [10] Ostrowski J, Kredich NM., 1990, In vitro interactions of CysB protein with the cysJIH promoter of Salmonella typhimurium: inhibitory effects of sulfide., J Bacteriol.

 [11] van der Ploeg JR., Iwanicka-Nowicka R., Kertesz MA., Leisinger T., Hryniewicz MM., 1997, Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli., J Bacteriol 179(24):7671-8

 [12] Hryniewicz MM, Kredich NM., 1991, The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate., J. Bacteriol.

 [13] Iwanicka-Nowicka R., Hryniewicz MM., 1995, A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon., Gene 166(1):11-7

 [14] Ostrowski J., Kredich NM., 1991, Negative autoregulation of cysB in Salmonella typhimurium: in vitro interactions of CysB protein with the cysB promoter., J Bacteriol 173(7):2212-8

 [15] Leyh TS., Vogt TF., Suo Y., 1992, The DNA sequence of the sulfate activation locus from Escherichia coli K-12., J Biol Chem 267(15):10405-10

 [16] Monroe RS., Ostrowski J., Hryniewicz MM., Kredich NM., 1990, In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium., J Bacteriol 172(12):6919-29

 [17] Lochowska A., Iwanicka-Nowicka R., Plochocka D., Hryniewicz MM., 2001, Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control., J Biol Chem 276(3):2098-107

 [18] Otsuka J., Watanabe H., Mori KT., 1996, Evolution of transcriptional regulation system through promiscuous coupling of regulatory proteins with operons; suggestion from protein sequence similarities in Escherichia coli., J Theor Biol 178(2):183-204

 [19] Kawano Y., Ohtsu I., Takumi K., Tamakoshi A., Nonaka G., Funahashi E., Ihara M., Takagi H., 2015, Enhancement of L-cysteine production by disruption of yciW in Escherichia coli., J Biosci Bioeng 119(2):176-9

 [20] Lilic M., Jovanovic M., Jovanovic G., Savic DJ., 2003, Identification of the CysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype., FEMS Microbiol Lett 224(2):239-46

 [21] Bykowski T., van der Ploeg JR., Iwanicka-Nowicka R., Hryniewicz MM., 2002, The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5'-phosphosulphate (APS) as a signalling molecule for sulphate excess., Mol Microbiol 43(5):1347-58

 [22] van Der Ploeg JR., Iwanicka-Nowicka R., Bykowski T., Hryniewicz MM., Leisinger T., 1999, The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl., J Biol Chem 274(41):29358-65

 [23] Chonoles Imlay KR., Korshunov S., Imlay JA., 2015, Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli., J Bacteriol 197(23):3629-44

 [24] Leyh TS., Taylor JC., Markham GD., 1988, The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization., J Biol Chem 263(5):2409-16

 [25] Lamark T., Kaasen I., Eshoo MW., Falkenberg P., McDougall J., Strom AR., 1991, DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli., Mol Microbiol 5(5):1049-64



RegulonDB