RegulonDB RegulonDB 10.0:Regulon Page
   

PspF DNA-binding transcriptional dual regulator

Synonyms: PspF
Summary:
The transcription factor PspF, for "Phage shock protein F," is a bacterial enhancer-binding protein required for σ54-dependent transcription activation [5]. This regulator activates the transcription of the psp regulon, and it is negatively autoregulated and coordinately activated by transcription of the divergent operon psp [1, 4, 5]. The integration host factor facilitates control of the psp regulon [2, 4]. The psp regulon is defined like the phage shock protein system, which is involved in protecting the bacterium during infectious processes [4, 5]. The synthesis of this regulon is induced when Escherichia coli is grown under different extracytoplasmic stress conditions and upon infection by filamentous phage (phage shock) [6, 7].
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence (Confirmed, Strong, Weak) References
PspF Functional   nd nd
Evolutionary Family: EBP
Connectivity class: Local Regulator
Gene name: pspF
  Genome position: 1366935-1367912
  Length: 978 bp / 325 aa
Operon name: pspF
TU(s) encoding the TF:
Transcription unit        Promoter
pspF
pspFp1
pspF
pspFp2
pspF
pspFp3


Regulon       
Regulated gene(s) pspA, pspB, pspC, pspD, pspE, pspF, pspG
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
prophage genes and phage related functions (5)
operon (4)
inhibition / activation of enzymes (1)
Transcription related (1)
activator (1)
Read more >
Regulated operon(s) pspABCDE, pspF, pspG
First gene in the operon(s) pspA, pspF, pspG
Simple and complex regulons IHF,PspF
PspF
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[PspF,-](1)
[PspF,+](2)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence LeftPos RightPos Evidence (Confirmed, Strong, Weak) References
  PspF activator pspAp Sigma54 -119.0 -160.0 pspA, pspB, pspC, pspD, pspE
acactaacaaGTGGCGAATTTCATCATggcagaatac
1367911 1367927 [BCE], [BPP], [GEA] [1], [2], [3]
  PspF activator pspAp Sigma54 -99.0 -140.0 pspA, pspB, pspC, pspD, pspE
ccaggatgagTTAGCGAATTACACTAAcaagtggcga
1367931 1367947 [BCE], [BPP], [GEA] [1], [2], [3]
  PspF repressor pspFp1 Sigma70 7.0 -27.0 pspF
tcgccacttgTTAGTGTAATTCGCTAActcatcctgg
1367931 1367947 [BCE], [BPP], [GEA] [1], [2], [3]
  PspF repressor pspFp1 Sigma70 27.0 -7.0 pspF
gtattctgccATGATGAAATTCGCCACttgttagtgt
1367911 1367927 [BCE], [BPP], [GEA] [1], [2], [3]
  PspF activator pspGp Sigma54 -87.0 -111.0 pspG
tcaccaaaaaGTAGTCAAATTCACCACgccctgcgca
4262721 4262737 [BPP], [GEA], [ICA] [4]


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
Promoter-target gene evolutionary conservation


Evidence    

 [BCE] Binding of cellular extracts

 [BPP] Binding of purified proteins

 [GEA] Gene expression analysis

 [ICA] Inferred by computational analysis



Reference(s)    

 [1] Jovanovic G., Dworkin J., Model P., 1997, Autogenous control of PspF, a constitutively active enhancer-binding protein of Escherichia coli., J Bacteriol 179(16):5232-7

 [2] Jovanovic G., Model P., 1997, PspF and IHF bind co-operatively in the psp promoter-regulatory region of Escherichia coli., Mol Microbiol 25(3):473-81

 [3] Jovanovic G., Rakonjac J., Model P., 1999, In vivo and in vitro activities of the Escherichia coli sigma54 transcription activator, PspF, and its DNA-binding mutant, PspFDeltaHTH., J Mol Biol 285(2):469-83

 [4] Lloyd LJ., Jones SE., Jovanovic G., Gyaneshwar P., Rolfe MD., Thompson A., Hinton JC., Buck M., 2004, Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG)., J Biol Chem 279(53):55707-14

 [5] Jovanovic G., Weiner L., Model P., 1996, Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon., J Bacteriol 178(7):1936-45

 [6] Weiner L., Brissette JL., Model P., 1991, Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms., Genes Dev 5(10):1912-23

 [7] Brissette JL., Weiner L., Ripmaster TL., Model P., 1991, Characterization and sequence of the Escherichia coli stress-induced psp operon., J Mol Biol 220(1):35-48

 [8] Elderkin S., Jones S., Schumacher J., Studholme D., Buck M., 2002, Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF., J Mol Biol 320(1):23-37

 [9] Dworkin J., Jovanovic G., Model P., 2000, The PspA protein of Escherichia coli is a negative regulator of sigma(54)-dependent transcription., J Bacteriol 182(2):311-9

 [10] Weiner L., Brissette JL., Ramani N., Model P., 1995, Analysis of the proteins and cis-acting elements regulating the stress-induced phage shock protein operon., Nucleic Acids Res 23(11):2030-6

 [11] Adams H., Teertstra W., Demmers J., Boesten R., Tommassen J., 2003, Interactions between phage-shock proteins in Escherichia coli., J Bacteriol 185(4):1174-80

 [12] Schumacher J., Joly N., Rappas M., Zhang X., Buck M., 2006, Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation., J Struct Biol 156(1):190-9



RegulonDB