RegulonDB RegulonDB 10.6.3:Regulon Page
   

GlaR DNA-binding transcriptional repressor

Synonyms: GlaR-glutarate, GlaR
Summary:
The transcription factor CsiR, for "Carbon starvation induced Regulator," was initially identified as a repressor that controls the transcription of genes involved in the degradation and transport of 4-aminobutyrate (GABA) for utilization as a source of nitrogen [4, 5, 7]. However, CsiR does not appear to respond directly to the presence of GABA [5], and later reports suggested that it does not affect expression of gabDTP [1, 4]. CsiR represses transcription from the csiD promoter during stationary phase [4]. Currently, no DNA-binding sites for this regulator have been reported in the literature [4]. csiR expression is induced at stationary phase, but is not autoregulated and not dependent on σS [4]. A csiR mutant (gabC1) has the ability to utilize γ-aminobutyrate (GABA) as the sole source of nitrogen [5, 8, 9, 10]. In an experiment using directed cell evolution of a ΔpanD mutant (containing a damaged CoA biosynthesis pathway), a pathway for β-alanine biosynthesis via uracil degradation emerged.
Read more >


Transcription factor      
TF conformation(s):
Name Conformation Type TF-Effector Interaction Type Apo/Holo Conformation Evidence (Confirmed, Strong, Weak) References
GlaR Functional   [APPHINH], [IMP] [1], [2], [3], [4], [5], [6]
GlaR-glutarate Non-Functional   nd nd
Evolutionary Family: GntR
Connectivity class: Local Regulator
Gene name: glaR
  Genome position: 2795674-2796336
  Length: 663 bp / 220 aa
Operon name: glaR
TU(s) encoding the TF:
Transcription unit        Promoter
CsiR
null


Regulon       
Regulated gene(s) gabD, gabP, gabT, glaH, lhgD
Multifun term(s) of regulated gene(s) MultiFun Term (List of genes associated to the multifun term)
aminobutyrate catabolism (2)
putrescine catabolism (2)
amino acids (2)
carbon compounds (1)
Porters (Uni-, Sym- and Antiporters) (1)
Regulated operon(s) glaH-lhgD-gabDTP
First gene in the operon(s) glaH
Simple and complex regulons CRP,GlaR,H-NS,Lrp,ppGpp
Simple and complex regulatory phrases Regulatory phrase (List of promoters regulated by the phrase)
[GlaR,-](1)


Transcription factor regulation    


Transcription factor binding sites (TFBSs) arrangements
      

  Functional conformation Function Promoter Sigma factor Central Rel-Pos Distance to first Gene Genes Sequence LeftPos RightPos Evidence (Confirmed, Strong, Weak) References
  GlaR repressor csiDp Sigma38 -32.0 -89.5 glaH, lhgD, gabD, gabT, gabP
tatgtcgcttTTGTGCGCATTTTTcagaaatgta
2788889 2788902 [BPP], [GEA], [IEP] [2], [4]
  GlaR repressor csiDp Sigma38 -13.0 -70.5 glaH, lhgD, gabD, gabT, gabP
tttttcagaaATGTAGATATTTTTagattatggc
2788908 2788921 [BPP], [GEA], [IEP] [2], [4]


Evolutionary conservation of regulatory elements    
     Note: Evolutionary conservation of regulatory interactions and promoters is limited to gammaproteobacteria.
Promoter-target gene evolutionary conservation


Evidence    

 [APPHINH] Assay of protein purified to homogeneity from its native host

 [IMP] Inferred from mutant phenotype

 [BPP] Binding of purified proteins

 [GEA] Gene expression analysis

 [IEP] Inferred from expression pattern



Reference(s)    

 [1] Aquino P., Honda B., Jaini S., Lyubetskaya A., Hosur K., Chiu JG., Ekladious I., Hu D., Jin L., Sayeg MK., Stettner AI., Wang J., Wong BG., Wong WS., Alexander SL., Ba C., Bensussen SI., Bernstein DB., Braff D., Cha S., Cheng DI., Cho JH., Chou K., Chuang J., Gastler DE., Grasso DJ., Greifenberger JS., Guo C., Hawes AK., Israni DV., Jain SR., Kim J., Lei J., Li H., Li D., Li Q., Mancuso CP., Mao N., Masud SF., Meisel CL., Mi J., Nykyforchyn CS., Park M., Peterson HM., Ramirez AK., Reynolds DS., Rim NG., Saffie JC., Su H., Su WR., Su Y., Sun M., Thommes MM., Tu T., Varongchayakul N., Wagner TE., Weinberg BH., Yang R., Yaroslavsky A., Yoon C., Zhao Y., Zollinger AJ., Stringer AM., Foster JW., Wade J., Raman S., Broude N., Wong WW., Galagan JE., 2017, Coordinated regulation of acid resistance in Escherichia coli., BMC Syst Biol 11(1):1

 [2] Knorr S., Sinn M., Galetskiy D., Williams RM., Wang C., Muller N., Mayans O., Schleheck D., Hartig JS., 2018, Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate., Nat Commun 9(1):5071

 [3] Metzer E., Halpern YS., 1990, In vivo cloning and characterization of the gabCTDP gene cluster of Escherichia coli K-12., J Bacteriol 172(6):3250-6

 [4] Metzner M., Germer J., Hengge R., 2004, Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli., Mol Microbiol 51(3):799-811

 [5] Schneider BL., Ruback S., Kiupakis AK., Kasbarian H., Pybus C., Reitzer L., 2002, The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction., J Bacteriol 184(24):6976-86

 [6] Zaboura M., Halpern YS., 1978, Regulation of gamma-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes., J Bacteriol 133(2):447-51

 [7] Metzer E, Levitz R, Halpern YS, 1979, Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate., J Bacteriol, 1979 Mar

 [8] Dover S, Halpern YS, 1972, Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants., J Bacteriol, 1972 Feb

 [9] Dover S, Halpern YS, 1972, Control of the pathway of -aminobutyrate breakdown in Escherichia coli K-12., J Bacteriol, 1972 Apr

 [10] Dover S, Halpern YS, 1974, Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12., J Bacteriol, 1974 Feb

 [11] Pontrelli S., Fricke RCB., Teoh ST., Lavina WA., Putri SP., Fitz-Gibbon S., Chung M., Pellegrini M., Fukusaki E., Liao JC., 2018, Metabolic repair through emergence of new pathways in Escherichia coli., Nat Chem Biol 14(11):1005-1009



RegulonDB