RegulonDB RegulonDB 10.9: Gene Form
   

aroE gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

aroE tsaC yrdA yrdB yrdBp4 yrdBp4 yrdBp1 yrdBp1

Gene      
Name: aroE    Texpresso search in the literature
Synonym(s): ECK3268, EG10077, b3281
Genome position(nucleotides): 3430020 <-- 3430838 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
48.96
External database links:  
ASAP:
ABE-0010763
CGSC:
1004
ECHOBASE:
EB0075
ECOLIHUB:
aroE
OU-MICROARRAY:
b3281
STRING:
511145.b3281
COLOMBOS: aroE


Product      
Name: shikimate dehydrogenase
Synonym(s): AroE
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 29.414
Isoelectric point: 5.308
Motif(s):
 
Type Positions Sequence
14 -> 16 SKS
237 -> 267 GLGMLVAQAAHAFLLWHGVLPDVEPVIKQLQ
126 -> 130 GAGGA
6 -> 88 VFGNPIAHSKSPFIHQQFAQQLNIEHPYGRVLAPINDFINTLNAFFSAGGKGANVTVPFKEEAFARADELTERAALAGAVNTL
121 -> 190 RILLIGAGGASRGVLLPLLSLDCAVTITNRTVSRAEELAKLFAHTGSIQALSMDELEGHEFDLIINATSS

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.5 - biosynthesis of building blocks --> 1.5.1 - amino acids --> 1.5.1.20 - chorismate
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0005515 - protein binding
GO:0016491 - oxidoreductase activity
GO:0004764 - shikimate 3-dehydrogenase (NADP+) activity
GO:0000166 - nucleotide binding
GO:0050661 - NADP binding
biological_process GO:0033587 - shikimate biosynthetic process
GO:0008652 - cellular amino acid biosynthetic process
GO:0009073 - aromatic amino acid family biosynthetic process
GO:0009423 - chorismate biosynthetic process
GO:0019632 - shikimate metabolic process
GO:0055114 - oxidation-reduction process
Note(s): Note(s): ...[more].
Reference(s): [1] Anton IA., et al., 1988
[2] Chaudhuri S., et al., 1987
[3] Chen K., et al., 2012
[4] Cui YY., et al., 2014
[5] Diaz-Quiroz DC., et al., 2018
[6] Escalante A., et al., 2010
[7] Johansson L., et al., 2006
[8] Johansson L., et al., 2005
[9] Juminaga D., et al., 2012
[10] Knop DR., et al., 2001
[11] Kramer M., et al., 2003
[12] Krell T., et al., 1998
[13] Li M., et al., 2013
[14] Liu X., et al., 2014
[15] Liu X., et al., 2016
[16] Liu XL., et al., 2016
[17] Luo ZW., et al., 2018
[18] Maclean J., et al., 2000
[19] Schmitz M., et al., 2002
[20] Sengupta S., et al., 2015
[21] Yaniv H., et al., 1955
[22] Zhou L., et al., 2017
External database links:  
DIP:
DIP-9153N
ECOCYC:
AROE-MONOMER
ECOLIWIKI:
b3281
INTERPRO:
IPR006151
INTERPRO:
IPR041121
INTERPRO:
IPR011342
INTERPRO:
IPR013708
INTERPRO:
IPR022893
INTERPRO:
IPR036291
MODBASE:
P15770
PDB:
1NYT
PFAM:
PF01488
PFAM:
PF08501
PFAM:
PF18317
PRIDE:
P15770
PRODB:
PRO_000022146
REFSEQ:
NP_417740
SMR:
P15770
UNIPROT:
P15770


Operon      
Name: yrdD-tsaC-aroE-yrdB         
Operon arrangement:
Transcription unit        Promoter
yrdD-rimN-aroE-yrdB


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter yrdBp1 3430062 reverse Similarity to the consensus
Read more >
[ICWHO] [23]
  promoter yrdBp4 3430088 reverse Similarity to the consensus
Read more >
[ICWHO] [23]


Evidence    

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Anton IA., Coggins JR., 1988, Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase., Biochem J 249(2):319-26

 [2] Chaudhuri S., Anton IA., Coggins JR., 1987, Shikimate dehydrogenase from Escherichia coli., Methods Enzymol 142:315-20

 [3] Chen K., Dou J., Tang S., Yang Y., Wang H., Fang H., Zhou C., 2012, Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli., Bioresour Technol 119:141-7

 [4] Cui YY., Ling C., Zhang YY., Huang J., Liu JZ., 2014, Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering., Microb Cell Fact 13:21

 [5] Diaz-Quiroz DC., Cardona-Felix CS., Viveros-Ceballos JL., Reyes-Gonzalez MA., Bolivar F., Ordonez M., Escalante A., 2018, Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli., J Enzyme Inhib Med Chem 33(1):397-404

 [6] Escalante A., Calderon R., Valdivia A., de Anda R., Hernandez G., Ramirez OT., Gosset G., Bolivar F., 2010, Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system., Microb Cell Fact 9:21

 [7] Johansson L., Liden G., 2006, Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions., J Biotechnol 126(4):528-45

 [8] Johansson L., Lindskog A., Silfversparre G., Cimander C., Nielsen KF., Liden G., 2005, Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions., Biotechnol Bioeng 92(5):541-52

 [9] Juminaga D., Baidoo EE., Redding-Johanson AM., Batth TS., Burd H., Mukhopadhyay A., Petzold CJ., Keasling JD., 2012, Modular engineering of L-tyrosine production in Escherichia coli., Appl Environ Microbiol 78(1):89-98

 [10] Knop DR., Draths KM., Chandran SS., Barker JL., von Daeniken R., Weber W., Frost JW., 2001, Hydroaromatic equilibration during biosynthesis of shikimic acid., J Am Chem Soc 123(42):10173-82

 [11] Kramer M., Bongaerts J., Bovenberg R., Kremer S., Muller U., Orf S., Wubbolts M., Raeven L., 2003, Metabolic engineering for microbial production of shikimic acid., Metab Eng 5(4):277-83

 [12] Krell T., Chackrewarthy S., Pitt AR., Elwell A., Coggins JR., 1998, Chemical modification monitored by electrospray mass spectrometry: a rapid and simple method for identifying and studying functional residues in enzymes., J Pept Res 51(3):201-9

 [13] Li M., Chen X., Zhou L., Shen W., Fan Y., Wang Z., 2013, [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering]., Sheng Wu Gong Cheng Xue Bao 29(1):56-67

 [14] Liu X., Lin J., Hu H., Zhou B., Zhu B., 2014, Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol., World J Microbiol Biotechnol 30(9):2543-50

 [15] Liu X., Lin J., Hu H., Zhou B., Zhu B., 2016, Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields., Enzyme Microb Technol 82:96-104

 [16] Liu XL., Lin J., Hu HF., Zhou B., Zhu BQ., 2016, Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli., Chin J Nat Med 14(4):286-293

 [17] Luo ZW., Kim WJ., Lee SY., 2018, Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose., ACS Synth Biol 7(9):2296-2307

 [18] Maclean J., Campbell SA., Pollock K., Chackrewarthy S., Coggins JR., Lapthorn AJ., 2000, Crystallization and preliminary X-ray analysis of shikimate dehydrogenase from Escherichia coli., Acta Crystallogr D Biol Crystallogr 56(Pt 4):512-5

 [19] Schmitz M., Hirsch E., Bongaerts J., Takors R., 2002, Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Escherichia coli., Biotechnol Prog 18(5):935-41

 [20] Sengupta S., Jonnalagadda S., Goonewardena L., Juturu V., 2015, Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli., Appl Environ Microbiol 81(23):8037-43

 [21] Yaniv H., Gilvarg C., 1955, Aromatic biosynthesis. XIV. 5-Dehydroshikimic reductase., J Biol Chem 213(2):787-95

 [22] Zhou L., Ding Q., Jiang GZ., Liu ZN., Wang HY., Zhao GR., 2017, Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A., Microb Cell Fact 16(1):84

 [23] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78


RegulonDB