RegulonDB RegulonDB 11.1: Gene Form
   

nfsA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

rimK nfsA ybjC grxA SoxS Rob MarA OxyR SoxS OxyR OxyR  SdsN rimKp rimKp ybjCp ybjCp grxAp grxAp

Gene      
Name: nfsA    Texpresso search in the literature
Synonym(s): ECK0842, EG11261, b0851, mda18, mdaA, ybjB
Genome position(nucleotides): 891184 --> 891906
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
52.56
External database links:  
ASAP:
ABE-0002900
ECHOBASE:
EB1241
ECOLIHUB:
nfsA
OU-MICROARRAY:
b0851
STRING:
511145.b0851
COLOMBOS: nfsA


Product      
Name: NADPH-dependent nitro/quinone reductase NfsA
Synonym(s): MdaA, NfsA, YbjB
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 26.801
Isoelectric point: 6.942
Motif(s):
 
Type Positions Sequence Comment
10 -> 159 GHRSIRHFTDEPISEAQREAIINSARATSSSSFLQCSSIIRITDKALREELVTLTGGQKHVAQAAEFWVFCADFNRHLQICPDAQLGLAEQLLLGVVDTAMMAQNALIAAESLGLGGVYIGGLRNNIEAVTKLLKLPQHVLPLFGLCLGW
11 -> 15 HRSIR UniProt: FMN.
128 -> 131 YIGG UniProt: FMN.
167 -> 169 KPR UniProt: FMN.
203 -> 203 R UniProt: Strong decrease in activity..

 

Classification:
Multifun Terms (GenProtEC)  
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0005515 - protein binding
GO:0016491 - oxidoreductase activity
GO:0016657 - oxidoreductase activity, acting on NAD(P)H, nitrogenous group as acceptor
GO:0003955 - NAD(P)H dehydrogenase (quinone) activity
GO:0010181 - FMN binding
GO:0042803 - protein homodimerization activity
GO:0034567 - chromate reductase activity
Note(s): Note(s): ...[more].
Reference(s): [1] Chan-Hyams JVE., et al., 2020
[2] Chan-Hyams JVE., et al., 2018
[3] Copp JN., et al., 2017
[4] Copp JN., et al., 2014
[5] Hameed P S., et al., 2018
[6] Hao Y., et al., 2016
[7] Hong CR., et al., 2018
[8] Li Z., et al., 2013
[9] Merkley ED., et al., 2010
[10] Mowday AM., et al., 2016
[11] Mowday AM., et al., 2020
[12] Pradhan SK., et al., 2019
[13] Steenhuis M., et al., 2021
[14] Valle A., et al., 2012
External database links:  
ALPHAFOLD:
P17117
DIP:
DIP-10334N
ECOCYC:
EG11261-MONOMER
ECOLIWIKI:
b0851
INTERPRO:
IPR029479
INTERPRO:
IPR016446
INTERPRO:
IPR000415
MODBASE:
P17117
PANTHER:
PTHR43425
PDB:
1F5V
PFAM:
PF00881
PRIDE:
P17117
PRODB:
PRO_000023377
REFSEQ:
NP_415372
SMR:
P17117
UNIPROT:
P17117


Operon      
Name: ybjC-nfsA-rimK-ybjN         
Operon arrangement:
Transcription unit        Promoter
ybjC-nfsA-rimK-ybjN
rimK-ybjN
ybjN


Transcriptional Regulation      
Display Regulation             
Activated by: MarA, SoxS, Rob
Repressed by: OxyR


Regulation by small RNA    
  Display Regulation
small RNA sdsN


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Chan-Hyams JVE., Ackerley DF., 2020, Protocol for evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative bacterial vector., MethodsX 7:100797

 [2] Chan-Hyams JVE., Copp JN., Smaill JB., Patterson AV., Ackerley DF., 2018, Evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative vector for bacterial-directed enzyme-prodrug therapy., Biochem Pharmacol 158:192-200

 [3] Copp JN., Mowday AM., Williams EM., Guise CP., Ashoorzadeh A., Sharrock AV., Flanagan JU., Smaill JB., Patterson AV., Ackerley DF., 2017, Engineering a Multifunctional Nitroreductase for Improved Activation of Prodrugs and PET Probes for Cancer Gene Therapy., Cell Chem Biol 24(3):391-403

 [4] Copp JN., Williams EM., Rich MH., Patterson AV., Smaill JB., Ackerley DF., 2014, Toward a high-throughput screening platform for directed evolution of enzymes that activate genotoxic prodrugs., Protein Eng Des Sel 27(10):399-403

 [5] Hameed P S., Bharatham N., Katagihallimath N., Sharma S., Nandishaiah R., Shanbhag AP., Thomas T., Narjari R., Sarma M., Bhowmik P., Amar P., Ravishankar R., Jayaraman R., Muthan K., Subbiah R., Ramachandran V., Balasubramanian V., Datta S., 2018, Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: Mechanism of action and Efficacy., Sci Rep 8(1):7263

 [6] Hao Y., Updegrove TB., Livingston NN., Storz G., 2016, Protection against deleterious nitrogen compounds: role of σS-dependent small RNAs encoded adjacent to sdiA., Nucleic Acids Res 44(14):6935-48

 [7] Hong CR., Dickson BD., Jaiswal JK., Pruijn FB., Hunter FW., Hay MP., Hicks KO., Wilson WR., 2018, Cellular pharmacology of evofosfamide (TH-302): A critical re-evaluation of its bystander effects., Biochem Pharmacol 156:265-280

 [8] Li Z., Gao X., Shi W., Li X., Ma H., 2013, 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase., Chem Commun (Camb) 49(52):5859-61

 [9] Merkley ED., Parson WW., Daggett V., 2010, Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold., Protein Eng Des Sel 23(5):327-36

 [10] Mowday AM., Ashoorzadeh A., Williams EM., Copp JN., Silva S., Bull MR., Abbattista MR., Anderson RF., Flanagan JU., Guise CP., Ackerley DF., Smaill JB., Patterson AV., 2016, Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy., Biochem Pharmacol 116:176-87

 [11] Mowday AM., Copp JN., Syddall SP., Dubois LJ., Wang J., Lieuwes NG., Biemans R., Ashoorzadeh A., Abbattista MR., Williams EM., Guise CP., Lambin P., Ackerley DF., Smaill JB., Theys J., Patterson AV., 2020, E. coli nitroreductase NfsA is a reporter gene for non-invasive PET imaging in cancer gene therapy applications., Theranostics 10(23):10548-10562

 [12] Pradhan SK., Singh NR., Dehury B., Panda D., Modi MK., Thatoi H., 2019, Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study., J Cell Biochem 120(10):16990-17005

 [13] Steenhuis M., Koningstein GM., Oswald J., Pick T., O'Keefe S., Koch HG., Cavalie A., Whitehead RC., Swanton E., High S., Luirink J., 2021, Eeyarestatin 24 impairs SecYEG-dependent protein trafficking and inhibits growth of clinically relevant pathogens., Mol Microbiol 115(1):28-40

 [14] Valle A., Le Borgne S., Bolivar J., Cabrera G., Cantero D., 2012, Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl 2-(2'-nitrophenoxy)acetate to 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), a benzohydroxamic acid with interesting biological properties., Appl Microbiol Biotechnol 94(1):163-71


RegulonDB