RegulonDB RegulonDB 11.1: Gene Form
   

rseP gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

bamA rseP cdsA CpxR TSS_365 TSS_365 TSS_364 TSS_364 TSS_363 (cluster) TSS_363 (cluster) TSS_362 (cluster) TSS_362 (cluster) TSS_361 TSS_361 TSS_360 TSS_360 TSS_359 TSS_359 TSS_358 TSS_358 TSS_357 TSS_357 TSS_356 TSS_356 TSS_355 (cluster) TSS_355 (cluster) TSS_354 TSS_354 TSS_353 TSS_353 TSS_352 TSS_352 TSS_351 (cluster) TSS_351 (cluster) TSS_350 (cluster) TSS_350 (cluster) TSS_349 TSS_349 TSS_348 (cluster) TSS_348 (cluster) TSS_347 TSS_347 TSS_346 TSS_346 TSS_345 TSS_345 TSS_344 TSS_344 bamAp1 bamAp1 TSS_343 TSS_343 TSS_342 TSS_342 TSS_341 (cluster) TSS_341 (cluster) bamAp2 bamAp2 TSS_339 TSS_339 rsePp rsePp

Gene      
Name: rseP    Texpresso search in the literature
Synonym(s): ECK0175, EG12436, b0176, ecfE, yaeL
Genome position(nucleotides): 196546 --> 197898
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
50.92
External database links:  
ASAP:
ABE-0000603
ECHOBASE:
EB2331
ECOLIHUB:
rseP
OU-MICROARRAY:
b0176
STRING:
511145.b0176
COLOMBOS: rseP


Product      
Name: intramembrane zinc metalloprotease RseP
Synonym(s): EcfE, RseP, YaeL, signal peptide peptidase
Sequence: Get amino acid sequence Fasta Format
Cellular location: inner membrane
Molecular weight: 49.071
Isoelectric point: 7.146
Motif(s):
 
Type Positions Sequence Comment
1 -> 21 MLSFLWDLASFIVALGVLITV UniProt: Helical.
11 -> 215 FIVALGVLITVHEFGHFWVARRCGVRVERFSIGFGKALWRRTDKLGTEYVIALIPLGGYVKMLDERAEPVVPELRHHAFNNKSVGQRAAIIAAGPVANFIFAIFAYWLVFIIGVPGVRPVVGEIAANSIAAEAQIAPGTELKAVDGIETPDWDAVRLQLVDKIGDESTTITVAPFGSDQRRDVKLDLRHWAFEPDKEDPVSSLGI
19 -> 19 I I → N/F: confers 8-fold resistance to Batimastat (in a ΔacrA background) and prevents inhibition of σE activity
22 -> 22 H UniProt: Loss of protease activity..
23 -> 23 E UniProt: Loss of protease activity..

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.2 - degradation of macromolecules --> 1.2.3 - proteins/peptides/glycopeptides
  2 - information transfer --> 2.3 - protein related --> 2.3.6 - turnover, degradation
  3 - regulation --> 3.1 - type of regulation --> 3.1.2 - transcriptional level --> 3.1.2.1 - sigma factors, anti-sigmafactors
  3 - regulation --> 3.1 - type of regulation --> 3.1.3 - posttranscriptional --> 3.1.3.4 - proteases, cleavage of compounds
  5 - cell processes --> 5.5 - adaptations --> 5.5.2 - temperature extremes
  5 - cell processes --> 5.5 - adaptations --> 5.5.6 - other (mechanical, nutritional, oxidative stress)
Gene Ontology Terms (GO)  
cellular_component GO:0016020 - membrane
GO:0005886 - plasma membrane
GO:0005887 - integral component of plasma membrane
GO:0016021 - integral component of membrane
molecular_function GO:0008233 - peptidase activity
GO:0016787 - hydrolase activity
GO:0046872 - metal ion binding
GO:0004222 - metalloendopeptidase activity
GO:0008237 - metallopeptidase activity
GO:0043856 - anti-sigma factor antagonist activity
biological_process GO:0006508 - proteolysis
GO:0045893 - positive regulation of transcription, DNA-templated
GO:0036460 - cellular response to cell envelope stress
Note(s): Note(s): ...[more].
Evidence: [EXP-IDA] Inferred from direct assay
[EXP-IDA-PURIFIED-PROTEIN] Assay of protein purified to homogeneity
[EXP-IGI] Inferred from genetic interaction
Reference(s): [1] Akiyama K., et al., 2015
[2] Alba BM., et al., 2002
[3] Bohn C., et al., 2004
[4] Douchin V., et al., 2006
[5] Dries DR., et al., 2009
[6] Hizukuri Y., et al., 2012
[7] Kanehara K., et al., 2002
[8] Koide K., et al., 2008
[9] Koide K., et al., 2007
[10] Li X., et al., 2009
[11] Lindner E., et al., 2019
[12] Miyake T., et al., 2020
[13] Strisovsky K. 2016
External database links:  
ALPHAFOLD:
P0AEH1
DIP:
DIP-48061N
ECOCYC:
EG12436-MONOMER
ECOLIWIKI:
b0176
INTERPRO:
IPR036034
INTERPRO:
IPR041489
INTERPRO:
IPR008915
INTERPRO:
IPR004387
INTERPRO:
IPR001478
MODBASE:
P0AEH1
PDB:
3ID3
PDB:
3ID2
PDB:
3ID1
PDB:
3ID4
PDB:
2ZPL
PDB:
2ZPM
PFAM:
PF02163
PFAM:
PF17820
PRIDE:
P0AEH1
PRODB:
PRO_000023880
PROSITE:
PS50106
PROSITE:
PS00142
REFSEQ:
NP_414718
SMART:
SM00228
SMR:
P0AEH1
UNIPROT:
P0AEH1


Operon      
Name: rseP         
Operon arrangement:
Transcription unit        Promoter
rseP


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_339 196978 forward nd [RS-EPT-CBR] [14]
  promoter TSS_341 (cluster) 197487 forward nd [RS-EPT-CBR] [14]
  promoter TSS_342 197586 forward nd [RS-EPT-CBR] [14]
  promoter TSS_343 197588 reverse nd [RS-EPT-CBR] [14]
  promoter TSS_344 197883 forward nd [RS-EPT-CBR] [14]
  promoter TSS_345 198507 forward nd [RS-EPT-CBR] [14]
  promoter TSS_346 198777 forward nd [RS-EPT-CBR] [14]
  promoter TSS_347 198782 forward nd [RS-EPT-CBR] [14]
  promoter TSS_348 (cluster) 198858 forward nd [RS-EPT-CBR] [14]
  promoter TSS_349 198875 forward nd [RS-EPT-CBR] [14]
  promoter TSS_350 (cluster) 198877 forward nd [RS-EPT-CBR] [14]
  promoter TSS_351 (cluster) 198881 forward nd [RS-EPT-CBR] [14]
  promoter TSS_352 198887 forward nd [RS-EPT-CBR] [14]
  promoter TSS_353 198889 forward nd [RS-EPT-CBR] [14]
  promoter TSS_354 198893 forward nd [RS-EPT-CBR] [14]
  promoter TSS_355 (cluster) 198908 forward nd [RS-EPT-CBR] [14]
  promoter TSS_356 199004 forward nd [RS-EPT-CBR] [14]
  promoter TSS_357 199007 forward nd [RS-EPT-CBR] [14]
  promoter TSS_358 199009 forward nd [RS-EPT-CBR] [14]
  promoter TSS_359 199012 forward nd [RS-EPT-CBR] [14]
  promoter TSS_360 199980 forward nd [RS-EPT-CBR] [14]
  promoter TSS_361 200131 forward nd [RS-EPT-CBR] [14]
  promoter TSS_362 (cluster) 200135 forward nd [RS-EPT-CBR] [14]
  promoter TSS_363 (cluster) 200138 forward nd [RS-EPT-CBR] [14]
  promoter TSS_364 200212 forward nd [RS-EPT-CBR] [14]
  promoter TSS_365 200317 forward nd [RS-EPT-CBR] [14]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Akiyama K., Mizuno S., Hizukuri Y., Mori H., Nogi T., Akiyama Y., 2015, Roles of the membrane-reentrant β-hairpin-like loop of RseP protease in selective substrate cleavage., Elife 4

 [2] Alba BM., Leeds JA., Onufryk C., Lu CZ., Gross CA., 2002, DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response., Genes Dev 16(16):2156-68

 [3] Bohn C., Collier J., Bouloc P., 2004, Dispensable PDZ domain of Escherichia coli YaeL essential protease., Mol Microbiol 52(2):427-35

 [4] Douchin V., Bohn C., Bouloc P., 2006, Down-regulation of porins by a small RNA bypasses the essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli., J Biol Chem 281(18):12253-9

 [5] Dries DR., Yu G., 2009, Rip exposed: how ectodomain shedding regulates the proteolytic processing of transmembrane substrates., Proc Natl Acad Sci U S A 106(35):14737-8

 [6] Hizukuri Y., Akiyama Y., 2012, PDZ domains of RseP are not essential for sequential cleavage of RseA or stress-induced σ(E) activation in vivo., Mol Microbiol 86(5):1232-45

 [7] Kanehara K., Ito K., Akiyama Y., 2002, YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA., Genes Dev 16(16):2147-55

 [8] Koide K., Ito K., Akiyama Y., 2008, Substrate recognition and binding by RseP, an Escherichia coli intramembrane protease., J Biol Chem 283(15):9562-70

 [9] Koide K., Maegawa S., Ito K., Akiyama Y., 2007, Environment of the active site region of RseP, an Escherichia coli regulated intramembrane proteolysis protease, assessed by site-directed cysteine alkylation., J Biol Chem 282(7):4553-60

 [10] Li X., Wang B., Feng L., Kang H., Qi Y., Wang J., Shi Y., 2009, Cleavage of RseA by RseP requires a carboxyl-terminal hydrophobic amino acid following DegS cleavage., Proc Natl Acad Sci U S A 106(35):14837-42

 [11] Lindner E., White SH., 2019, Dropping Out and Other Fates of Transmembrane Segments Inserted by the SecA ATPase., J Mol Biol 431(10):2006-2019

 [12] Miyake T., Hizukuri Y., Akiyama Y., 2020, Involvement of a Membrane-Bound Amphiphilic Helix in Substrate Discrimination and Binding by an Escherichia coli S2P Peptidase RseP., Front Microbiol 11:607381

 [13] Strisovsky K., 2016, Why cells need intramembrane proteases - a mechanistic perspective., FEBS J 283(10):1837-45

 [14] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB