RegulonDB RegulonDB 11.1: Gene Form
   

ygcE gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

ygcE yqcE queE

Gene      
Name: ygcE    Texpresso search in the literature
Synonym(s): ECK2770, G7442, b2776
Genome position(nucleotides): 2901896 --> 2903374
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
49.02
External database links:  
ASAP:
ABE-0009097
ECHOBASE:
EB2848
ECOLIHUB:
ygcE
OU-MICROARRAY:
b2776
STRING:
511145.b2776
COLOMBOS: ygcE


Product      
Name: putative sugar kinase YgcE
Synonym(s): YgcE
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 54.177
Isoelectric point: 5.041
Motif(s):
 
Type Positions Sequence Comment
5 -> 110 YIIGIDGGSQSTKVVMYDLEGNVVCEGKGLLQPMHTPDADTAEHPDDDLWASLCFAGHDLMSQFAGNKEDIVGIGLGSIRCCRALLKADGTPAAPLISWQDARVTR
225 -> 418 AVISLGTYIALMMNGKALPKDPVAYWPIMSSIPQTLLYEGYGIRKGMWTVSWLRDMLGESLIQDARAQDLSPEDLLNKKASCVPPGCNGLMTVLDWLTNPWEPYKRGIMIGFDSSMDYAWIYRSILESVALTLKNNYDNMCNEMNHFAKHVIITGGGSNSDLFMQIFADVFNLPARRNAINGCASLGAAINTAV

 

Classification:
Multifun Terms (GenProtEC)  
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0016740 - transferase activity
GO:0016301 - kinase activity
GO:0016773 - phosphotransferase activity, alcohol group as acceptor
biological_process GO:0005975 - carbohydrate metabolic process
GO:0016310 - phosphorylation
Note(s): Note(s): ...[more].
Reference(s): [1] Nagar N., et al., 2021
External database links:  
ALPHAFOLD:
P55138
ECOCYC:
G7442-MONOMER
ECOLIWIKI:
b2776
INTERPRO:
IPR043129
INTERPRO:
IPR018484
INTERPRO:
IPR000577
INTERPRO:
IPR018485
MODBASE:
P55138
PFAM:
PF02782
PFAM:
PF00370
PRIDE:
P55138
PROSITE:
PS00933
REFSEQ:
NP_417256
UNIPROT:
P55138


Operon      
Name: yqcE-ygcE         
Operon arrangement:
Transcription unit        Promoter
yqcE-ygcE


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Nagar N., Ecker N., Loewenthal G., Avram O., Ben-Meir D., Biran D., Ron E., Pupko T., 2021, Harnessing Machine Learning To Unravel Protein Degradation in Escherichia coli., mSystems 6(1)


RegulonDB