RegulonDB RegulonDB 11.2: Gene Form

cheA gene in Escherichia coli K-12 genome

Gene local context to scale (view description)

cheA motB cheW motA TSS_2229 TSS_2229 TSS_2228 TSS_2228 cheWp5 cheWp5

Name: cheA    Texpresso search in the literature
Synonym(s): ECK1889, EG10146, b1888
Genome position(nucleotides): 1973360 <-- 1975324
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
External database links:  

Name: chemotaxis protein CheA
Synonym(s): CheA
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol,inner membrane
Molecular weight: 71.382
Isoelectric point: 4.52
Type Positions Sequence Comment
15 -> 36 EADELLADMEQHLLVLQPEAPD In CheAS - helical region implicated in CheZ binding (see also |CITS: [19581362][19542283]|)


Multifun Terms (GenProtEC)  
  2 - information transfer --> 2.3 - protein related --> 2.3.3 - posttranslational modification
  5 - cell processes --> 5.3 - motility, chemotaxis, energytaxis (aerotaxis, redoxtaxis etc)
  2 - information transfer --> 2.3 - protein related --> 2.3.3 - posttranslational modification
  5 - cell processes --> 5.3 - motility, chemotaxis, energytaxis (aerotaxis, redoxtaxis etc)
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0098561 - methyl accepting chemotaxis protein complex
GO:0005737 - cytoplasm
GO:0005829 - cytosol
GO:0005886 - plasma membrane
molecular_function GO:0005515 - protein binding
GO:0005515 - protein binding
GO:0016740 - transferase activity
GO:0016772 - transferase activity, transferring phosphorus-containing groups
GO:0016301 - kinase activity
GO:0000166 - nucleotide binding
GO:0005524 - ATP binding
GO:0000155 - phosphorelay sensor kinase activity
GO:0004673 - protein histidine kinase activity
biological_process GO:0006935 - chemotaxis
GO:0051649 - establishment of localization in cell
GO:1901875 - positive regulation of post-translational protein modification
GO:0043052 - thermotaxis
GO:0016310 - phosphorylation
GO:0000160 - phosphorelay signal transduction system
GO:0007165 - signal transduction
GO:0046777 - protein autophosphorylation
GO:0006935 - chemotaxis
GO:0018106 - peptidyl-histidine phosphorylation
GO:0050920 - regulation of chemotaxis
GO:0071977 - bacterial-type flagellum-dependent swimming motility
GO:0009454 - aerotaxis
GO:1902021 - regulation of bacterial-type flagellum-dependent cell motility
GO:0031400 - negative regulation of protein modification process
Note(s): Note(s): ...[more].
Reference(s): [1] Boukhvalova MS., et al., 2002
[2] Briegel A., et al., 2013
[3] Cassidy CK., et al., 2020
[4] Conley MP., et al., 1994
[5] Conley MP., et al., 1989
[6] Ding X., et al., 2018
[7] Ellefson DD., et al., 1997
[8] Francis NR., et al., 2004
[9] Garzon A., et al., 1996
[10] Ho SH., et al., 2019
[11] Levit M., et al., 1996
[12] Levit MN., et al., 2002
[13] Mayover TL., et al., 1999
[14] Minato Y., et al., 2012
[15] Morrison TB., et al., 1997
[16] Nishiyama S., et al., 2014
[17] Parkinson JS., et al., 1982
[18] Piasta KN., et al., 2013
[19] Pinas GE., et al., 2019
[20] Rowsell EH., et al., 1995
[21] Springer MS., et al., 1984
[22] Stewart RC. 2005
[23] Tawa P., et al., 1994
[24] Thakor H., et al., 2011
[25] Wolfe AJ., et al., 1987
[26] Zhang J., et al., 2005
[27] Zhao J., et al., 2006
[28] Zhou H., et al., 1996
External database links:  

Name: motRAB-cheAW         
Operon arrangement:
Transcription unit        Promoter

Transcriptional Regulation      
Display Regulation             
Repressed by: CpxR

Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter cheWp5 1973462 reverse nd [COMP-AINF] [29]
  promoter TSS_2228 1973726 reverse nd [RS-EPT-CBR] [30]
  promoter TSS_2229 1975808 reverse nd [RS-EPT-CBR] [30]


 [COMP-AINF] Inferred computationally without human oversight

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates


 [1] Boukhvalova MS., Dahlquist FW., Stewart RC., 2002, CheW binding interactions with CheA and Tar. Importance for chemotaxis signaling in Escherichia coli., J Biol Chem 277(25):22251-9

 [2] Briegel A., Ames P., Gumbart JC., Oikonomou CM., Parkinson JS., Jensen GJ., 2013, The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state., Mol Microbiol 89(5):831-41

 [3] Cassidy CK., Himes BA., Sun D., Ma J., Zhao G., Parkinson JS., Stansfeld PJ., Luthey-Schulten Z., Zhang P., 2020, Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations., Commun Biol 3(1):24

 [4] Conley MP., Berg HC., Tawa P., Stewart RC., Ellefson DD., Wolfe AJ., 1994, pH dependence of CheA autophosphorylation in Escherichia coli., J Bacteriol 176(13):3870-7

 [5] Conley MP., Wolfe AJ., Blair DF., Berg HC., 1989, Both CheA and CheW are required for reconstitution of chemotactic signaling in Escherichia coli., J Bacteriol 171(9):5190-3

 [6] Ding X., He Q., Shen F., Dahlquist FW., Wang X., 2018, Regulatory Role of an Interdomain Linker in the Bacterial Chemotaxis Histidine Kinase CheA., J Bacteriol 200(10)

 [7] Ellefson DD., Weber U., Wolfe AJ., 1997, Genetic analysis of the catalytic domain of the chemotaxis-associated histidine kinase CheA., J Bacteriol 179(3):825-30

 [8] Francis NR., Wolanin PM., Stock JB., Derosier DJ., Thomas DR., 2004, Three-dimensional structure and organization of a receptor/signaling complex., Proc Natl Acad Sci U S A 101(50):17480-5

 [9] Garzon A., Parkinson JS., 1996, Chemotactic signaling by the P1 phosphorylation domain liberated from the CheA histidine kinase of Escherichia coli., J Bacteriol 178(23):6752-8

 [10] Ho SH., Tirrell DA., 2019, Enzymatic Labeling of Bacterial Proteins for Super-resolution Imaging in Live Cells., ACS Cent Sci 5(12):1911-1919

 [11] Levit M., Liu Y., Surette M., Stock J., 1996, Active site interference and asymmetric activation in the chemotaxis protein histidine kinase CheA., J Biol Chem 271(50):32057-63

 [12] Levit MN., Grebe TW., Stock JB., 2002, Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis., J Biol Chem 277(39):36748-54

 [13] Mayover TL., Halkides CJ., Stewart RC., 1999, Kinetic characterization of CheY phosphorylation reactions: comparison of P-CheA and small-molecule phosphodonors., Biochemistry 38(8):2259-71

 [14] Minato Y., Ueda T., Machiyama A., Shimada I., Iwai H., 2012, Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing., J Biomol NMR 53(3):191-207

 [15] Morrison TB., Parkinson JS., 1997, A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling., J Bacteriol 179(17):5543-50

 [16] Nishiyama S., Garzon A., Parkinson JS., 2014, Mutational analysis of the P1 phosphorylation domain in Escherichia coli CheA, the signaling kinase for chemotaxis., J Bacteriol 196(2):257-64

 [17] Parkinson JS., Houts SE., 1982, Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions., J Bacteriol 151(1):106-13

 [18] Piasta KN., Ulliman CJ., Slivka PF., Crane BR., Falke JJ., 2013, Defining a key receptor-CheA kinase contact and elucidating its function in the membrane-bound bacterial chemosensory array: a disulfide mapping and TAM-IDS Study., Biochemistry 52(22):3866-80

 [19] Pinas GE., Parkinson JS., 2019, Identification of a Kinase-Active CheA Conformation in Escherichia coli Chemoreceptor Signaling Complexes., J Bacteriol 201(23)

 [20] Rowsell EH., Smith JM., Wolfe A., Taylor BL., 1995, CheA, CheW, and CheY are required for chemotaxis to oxygen and sugars of the phosphotransferase system in Escherichia coli., J Bacteriol 177(20):6011-4

 [21] Springer MS., Zanolari B., 1984, Sensory transduction in Escherichia coli: regulation of the demethylation rate by the CheA protein., Proc Natl Acad Sci U S A 81(16):5061-5

 [22] Stewart RC., 2005, Analysis of ATP binding to CheA containing tryptophan substitutions near the active site., Biochemistry 44(11):4375-85

 [23] Tawa P., Stewart RC., 1994, Kinetics of CheA autophosphorylation and dephosphorylation reactions., Biochemistry 33(25):7917-24

 [24] Thakor H., Nicholas S., Porter IM., Hand N., Stewart RC., 2011, Identification of an anchor residue for CheA-CheY interactions in the chemotaxis system of Escherichia coli., J Bacteriol 193(15):3894-903

 [25] Wolfe AJ., Conley MP., Kramer TJ., Berg HC., 1987, Reconstitution of signaling in bacterial chemotaxis., J Bacteriol 169(5):1878-85

 [26] Zhang J., Xu Y., Shen J., Luo X., Chen J., Chen K., Zhu W., Jiang H., 2005, Dynamic mechanism for the autophosphorylation of CheA histidine kinase: molecular dynamics simulations., J Am Chem Soc 127(33):11709-19

 [27] Zhao J., Parkinson JS., 2006, Mutational analysis of the chemoreceptor-coupling domain of the Escherichia coli chemotaxis signaling kinase CheA., J Bacteriol 188(9):3299-307

 [28] Zhou H., McEvoy MM., Lowry DF., Swanson RV., Simon MI., Dahlquist FW., 1996, Phosphotransfer and CheY-binding domains of the histidine autokinase CheA are joined by a flexible linker., Biochemistry 35(2):433-43

 [29] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78

 [30] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.