RegulonDB RegulonDB 11.2: Gene Form

motA gene in Escherichia coli K-12 genome

Gene local context to scale (view description)

cheA motB motA motR flhC anti-anti-terminator anti-terminator terminator motRp motRp TSS_2231 TSS_2231 TSS_2230 TSS_2230 TSS_2229 TSS_2229 TSS_2228 TSS_2228 cheWp5 cheWp5

Name: motA    Texpresso search in the literature
Synonym(s): ECK1891, EG10601, b1890, flaJ
Genome position(nucleotides): 1976252 <-- 1977139
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
External database links:  

Name: motility protein A
Synonym(s): FlaJ, MotA
Sequence: Get amino acid sequence Fasta Format
Cellular location: inner membrane,cell projection
Molecular weight: 32.011
Isoelectric point: 5.385
Type Positions Sequence Comment
2 -> 21 LILLGYLVVLGTVFGGYLMT UniProt: Helical.
6 -> 6 G G → S/D/N: dominant mutation associated with complete loss of motility
12 -> 12 G G → D: dominant mutation associated with complete loss of motility
13 -> 13 T T → I: dominant mutation associated with complete loss of motility


Multifun Terms (GenProtEC)  
  4 - transport --> 4.1 - Channel-type Transporters --> 4.1.A - alpha-type channels
  5 - cell processes --> 5.3 - motility, chemotaxis, energytaxis (aerotaxis, redoxtaxis etc)
  6 - cell structure --> 6.1 - membrane
Gene Ontology Terms (GO)  
cellular_component GO:0120101 - bacterial-type flagellum stator complex
GO:0016020 - membrane
GO:0005886 - plasma membrane
GO:0005887 - integral component of plasma membrane
GO:0016021 - integral component of membrane
GO:0009288 - bacterial-type flagellum
molecular_function GO:0015252 - proton channel activity
GO:0005515 - protein binding
biological_process GO:0006811 - ion transport
GO:0006935 - chemotaxis
GO:0071973 - bacterial-type flagellum-dependent cell motility
GO:0071978 - bacterial-type flagellum-dependent swarming motility
GO:1902600 - proton transmembrane transport
GO:0097588 - archaeal or bacterial-type flagellum-dependent cell motility
Note(s): Note(s): ...[more].
Evidence: [EXP-IMP] Inferred from mutant phenotype
Reference(s): [1] Asai Y., et al., 2003
[2] Berry RM. 2000
[3] Blair DF., et al., 1991
[4] Blair DF., et al., 1988
[5] Braun TF., et al., 2004
[6] Braun TF., et al., 1999
[7] Garza AG., et al., 1996
[8] Garza AG., et al., 1996
[9] Garza AG., et al., 1995
[10] Gosink KK., et al., 2000
[11] Hosking ER., et al., 2006
[12] Kim EA., et al., 2008
[13] Kitao A., et al., 2017
[14] Kojima S., et al., 2001
[15] Kojima S., et al., 2004
[16] Leake MC., et al., 2006
[17] Mandadapu KK., et al., 2015
[18] Minamino T., et al., 2018
[19] Onoue Y., et al., 2018
[20] Reid SW., et al., 2006
[21] Sharp LL., et al., 1995
[22] Sharp LL., et al., 1995
[23] Sowa Y., et al., 2014
[24] Stolz B., et al., 1991
[25] Tang H., et al., 1996
[26] Tipping MJ., et al., 2013
[27] Van Way SM., et al., 2000
[28] Wilson ML., et al., 1990
[29] Zhou J., et al., 1997
[30] Zhou J., et al., 1995
External database links:  

Name: motRAB-cheAW         
Operon arrangement:
Transcription unit        Promoter

Transcriptional Regulation      
Display Regulation             
Repressed by: CpxR

RNA cis-regulatory element    
Attenuation: Transcriptional

Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter cheWp5 1973462 reverse nd [COMP-AINF] [31]
  promoter TSS_2228 1973726 reverse nd [RS-EPT-CBR] [32]
  promoter TSS_2229 1975808 reverse nd [RS-EPT-CBR] [32]
  promoter TSS_2230 1976720 reverse nd [RS-EPT-CBR] [32]
  promoter TSS_2231 1977300 reverse nd [RS-EPT-CBR] [32]


 [COMP-AINF] Inferred computationally without human oversight

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates


 [1] Asai Y., Yakushi T., Kawagishi I., Homma M., 2003, Ion-coupling determinants of Na+-driven and H+-driven flagellar motors., J Mol Biol 327(2):453-63

 [2] Berry RM., 2000, Theories of rotary motors., Philos Trans R Soc Lond B Biol Sci 355(1396):503-9

 [3] Blair DF., Berg HC., 1991, Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction., J Mol Biol 221(4):1433-42

 [4] Blair DF., Berg HC., 1988, Restoration of torque in defective flagellar motors., Science 242(4886):1678-81

 [5] Braun TF., Al-Mawsawi LQ., Kojima S., Blair DF., 2004, Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli., Biochemistry 43(1):35-45

 [6] Braun TF., Poulson S., Gully JB., Empey JC., Van Way S., Putnam A., Blair DF., 1999, Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli., J Bacteriol 181(11):3542-51

 [7] Garza AG., Biran R., Wohlschlegel JA., Manson MD., 1996, Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor., J Mol Biol 258(2):270-85

 [8] Garza AG., Bronstein PA., Valdez PA., Harris-Haller LW., Manson MD., 1996, Extragenic suppression of motA missense mutations of Escherichia coli., J Bacteriol 178(21):6116-22

 [9] Garza AG., Harris-Haller LW., Stoebner RA., Manson MD., 1995, Motility protein interactions in the bacterial flagellar motor., Proc Natl Acad Sci U S A 92(6):1970-4

 [10] Gosink KK., Hase CC., 2000, Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli., J Bacteriol 182(15):4234-40

 [11] Hosking ER., Vogt C., Bakker EP., Manson MD., 2006, The Escherichia coli MotAB proton channel unplugged., J Mol Biol 364(5):921-37

 [12] Kim EA., Price-Carter M., Carlquist WC., Blair DF., 2008, Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change., Biochemistry 47(43):11332-9

 [13] Kitao A., Nishihara Y., 2017, Structure of the MotA/B Proton Channel., Methods Mol Biol 1593:133-145

 [14] Kojima S., Blair DF., 2001, Conformational change in the stator of the bacterial flagellar motor., Biochemistry 40(43):13041-50

 [15] Kojima S., Blair DF., 2004, Solubilization and purification of the MotA/MotB complex of Escherichia coli., Biochemistry 43(1):26-34

 [16] Leake MC., Chandler JH., Wadhams GH., Bai F., Berry RM., Armitage JP., 2006, Stoichiometry and turnover in single, functioning membrane protein complexes., Nature 443(7109):355-8

 [17] Mandadapu KK., Nirody JA., Berry RM., Oster G., 2015, Mechanics of torque generation in the bacterial flagellar motor., Proc Natl Acad Sci U S A 112(32):E4381-9

 [18] Minamino T., Terahara N., Kojima S., Namba K., 2018, Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment., Mol Microbiol 109(6):723-734

 [19] Onoue Y., Takekawa N., Nishikino T., Kojima S., Homma M., 2018, The role of conserved charged residues in the bidirectional rotation of the bacterial flagellar motor., Microbiologyopen 7(4):e00587

 [20] Reid SW., Leake MC., Chandler JH., Lo CJ., Armitage JP., Berry RM., 2006, The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11., Proc Natl Acad Sci U S A 103(21):8066-71

 [21] Sharp LL., Zhou J., Blair DF., 1995, Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli., Biochemistry 34(28):9166-71

 [22] Sharp LL., Zhou J., Blair DF., 1995, Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis., Proc Natl Acad Sci U S A 92(17):7946-50

 [23] Sowa Y., Homma M., Ishijima A., Berry RM., 2014, Hybrid-fuel bacterial flagellar motors in Escherichia coli., Proc Natl Acad Sci U S A 111(9):3436-41

 [24] Stolz B., Berg HC., 1991, Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli., J Bacteriol 173(21):7033-7

 [25] Tang H., Braun TF., Blair DF., 1996, Motility protein complexes in the bacterial flagellar motor., J Mol Biol 261(2):209-21

 [26] Tipping MJ., Steel BC., Delalez NJ., Berry RM., Armitage JP., 2013, Quantification of flagellar motor stator dynamics through in vivo proton-motive force control., Mol Microbiol 87(2):338-47

 [27] Van Way SM., Hosking ER., Braun TF., Manson MD., 2000, Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene., J Mol Biol 297(1):7-24

 [28] Wilson ML., Macnab RM., 1990, Co-overproduction and localization of the Escherichia coli motility proteins motA and motB., J Bacteriol 172(7):3932-9

 [29] Zhou J., Blair DF., 1997, Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor., J Mol Biol 273(2):428-39

 [30] Zhou J., Fazzio RT., Blair DF., 1995, Membrane topology of the MotA protein of Escherichia coli., J Mol Biol 251(2):237-42

 [31] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78

 [32] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.