RegulonDB RegulonDB 11.0: Gene Form
   

dsbA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

yihF srkA dsbA terminator terminator yihFp1 yihFp1 yihFp6 yihFp6 yihFp4 yihFp4 TSS_4532 TSS_4532 TSS_4531 TSS_4531 TSS_4530 (cluster) TSS_4530 (cluster) dsbAp dsbAp TSS_4528 TSS_4528

Gene      
Name: dsbA    Texpresso search in the literature
Synonym(s): ECK3852, EG11297, b3860, dsf, iarA, ppfA
Genome position(nucleotides): 4043418 --> 4044044
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
48.01
External database links:  
ASAP:
ABE-0012606
CGSC:
34063
ECHOBASE:
EB1274
ECOLIHUB:
dsbA
OU-MICROARRAY:
b3860
STRING:
511145.b3860
COLOMBOS: dsbA


Product      
Name: thiol:disulfide oxidoreductase DsbA
Synonym(s): DsbA, DsbAreduced, Dsf, IarA, PpfA, protein disulfide oxidoreductase DsbA, thiol:disulfide oxidoreductase - DsbAreduced
Sequence: Get amino acid sequence Fasta Format
Cellular location: periplasmic space
Molecular weight: 23.105
Isoelectric point: 6.275
Motif(s):
 
Type Positions Sequence Comment
1 -> 19 MKKIWLALAGLVLAFSASA
20 -> 150 AQYEDGKQYTTLEKPVAGAPQVLEFFSFFCPHCYQFEEVLHISDNVKKKLPEGVKMTKYHVNFMGGDLGKDLTQAWAVAMALGVEDKVTVPLFEGVQKTQTIRSASDIRDVFINAGIKGEEYDAAWNSFVV UniProt: Thioredoxin.
40 -> 197 QVLEFFSFFCPHCYQFEEVLHISDNVKKKLPEGVKMTKYHVNFMGGDLGKDLTQAWAVAMALGVEDKVTVPLFEGVQKTQTIRSASDIRDVFINAGIKGEEYDAAWNSFVVKSLVAQQEKAAADVQLRGVPAMFVNGKYQLNPQGMDTSNMDVFVQQY
49 -> 49 C C → A: loss of function mutation
50 -> 51 PH PH → DI: purified mutant protein is less oxidizing than wild type in vitro (redox potential of -172mV compared to -122mV for the wild type) but mutation confers enhanced catalytic activity in vivo (M13 infection assay)

 

Classification:
Multifun Terms (GenProtEC)  
  2 - information transfer --> 2.3 - protein related --> 2.3.4 - chaperoning, repair (refolding)
  5 - cell processes --> 5.5 - adaptations
Gene Ontology Terms (GO)  
cellular_component GO:0030288 - outer membrane-bounded periplasmic space
GO:0042597 - periplasmic space
molecular_function GO:0003756 - protein disulfide isomerase activity
GO:0005515 - protein binding
GO:0016491 - oxidoreductase activity
GO:0015035 - protein-disulfide reductase activity
biological_process GO:0071236 - cellular response to antibiotic
Note(s): Note(s): ...[more].
Reference(s): [1] Beld J., et al., 2010
[2] Bessette PH., et al., 2001
[3] Carvalho AT., et al., 2006
[4] Couprie J., et al., 2000
[5] Fabianek RA., et al., 2000
[6] Frech C., et al., 1995
[7] Frech C., et al., 1996
[8] Hennecke J., et al., 1997
[9] Joly JC., et al., 1994
[10] Jonda S., et al., 1999
[11] Manjasetty BA., et al., 2004
[12] Maskos K., et al., 2003
[13] Messens J., et al., 2007
[14] Moutiez M., et al., 1999
[15] Ondo-Mbele E., et al., 2005
[16] Regeimbal J., et al., 2002
[17] Schirra HJ., et al., 1998
[18] Shouldice SR., et al., 2010
[19] Sone M., et al., 1997
[20] Wunderlich M., et al., 1993
[21] Wunderlich M., et al., 1993
[22] Wunderlich M., et al., 1993
[23] Zapun A., et al., 1994
[24] Zhao Z., et al., 2015
External database links:  
ALPHAFOLD:
P0AEG4
DIP:
DIP-35886N
ECOCYC:
DISULFOXRED-MONOMER
ECOLIWIKI:
b3860
INTERPRO:
IPR001853
INTERPRO:
IPR023205
INTERPRO:
IPR036249
INTERPRO:
IPR013766
INTERPRO:
IPR017937
MINT:
P0AEG4
MODBASE:
P0AEG4
PDB:
1A23
PDB:
1A24
PDB:
1A2J
PDB:
1A2L
PDB:
1A2M
PDB:
1AC1
PDB:
1ACV
PDB:
1BQ7
PDB:
1DSB
PDB:
1FVJ
PDB:
1FVK
PDB:
1TI1
PDB:
1U3A
PDB:
1UN2
PDB:
2B3S
PDB:
2B6M
PDB:
2HI7
PDB:
2LEG
PDB:
2NDO
PDB:
2ZUP
PDB:
3E9J
PDB:
4TKY
PDB:
4ZIJ
PDB:
5QKC
PDB:
5QKD
PDB:
5QKE
PDB:
5QKF
PDB:
5QKG
PDB:
5QKH
PDB:
5QKI
PDB:
5QKJ
PDB:
5QKK
PDB:
5QKL
PDB:
5QKM
PDB:
5QKN
PDB:
5QKO
PDB:
5QKP
PDB:
5QKQ
PDB:
5QKR
PDB:
5QKS
PDB:
5QKT
PDB:
5QKU
PDB:
5QKV
PDB:
5QKW
PDB:
5QKX
PDB:
5QKY
PDB:
5QKZ
PDB:
5QL0
PDB:
5QL1
PDB:
5QL2
PDB:
5QL3
PDB:
5QL4
PDB:
5QL5
PDB:
5QL6
PDB:
5QL7
PDB:
5QL8
PDB:
5QL9
PDB:
5QLA
PDB:
5QLB
PDB:
5QLC
PDB:
5QLD
PDB:
5QLE
PDB:
5QLF
PDB:
5QLG
PDB:
5QLH
PDB:
5QLI
PDB:
5QLJ
PDB:
5QLK
PDB:
5QLL
PDB:
5QLM
PDB:
5QLN
PDB:
5QLO
PDB:
5QLP
PDB:
5QLQ
PDB:
5QLR
PDB:
5QLS
PDB:
5QLT
PDB:
5QLU
PDB:
5QLV
PDB:
5QLW
PDB:
5QLX
PDB:
5QLY
PDB:
5QLZ
PDB:
5QM0
PDB:
5QM1
PDB:
5QM2
PDB:
5QM3
PDB:
5QM4
PDB:
5QM5
PDB:
5QM6
PDB:
5QM7
PDB:
5QM8
PDB:
5QM9
PDB:
5QMA
PDB:
5QMB
PDB:
5QMC
PDB:
5QMD
PDB:
5QME
PDB:
5QMF
PDB:
5QMG
PDB:
5QMH
PDB:
5QMI
PDB:
5QMJ
PDB:
5QMK
PDB:
5QML
PDB:
5QMM
PDB:
5QMN
PDB:
5QMO
PDB:
5QMP
PDB:
5QMQ
PDB:
5QMR
PDB:
5QMS
PDB:
5QMT
PDB:
5QMU
PDB:
5QMV
PDB:
5QMW
PDB:
5QMX
PDB:
5QMY
PDB:
5QMZ
PDB:
5QN0
PDB:
5QN1
PDB:
5QN2
PDB:
5QN3
PDB:
5QN4
PDB:
5QN5
PDB:
5QN6
PDB:
5QN7
PDB:
5QN8
PDB:
5QN9
PDB:
5QNA
PDB:
5QNB
PDB:
5QNC
PDB:
5QND
PDB:
5QNE
PDB:
5QNF
PDB:
5QNG
PDB:
5QNH
PDB:
5QNI
PDB:
5QNJ
PDB:
5QNK
PDB:
5QNL
PDB:
5QNM
PDB:
5QNN
PDB:
5QNO
PDB:
5QNP
PDB:
5QNQ
PDB:
5QNR
PDB:
5QNS
PDB:
5QNT
PDB:
5QNU
PDB:
5QNV
PDB:
5QNW
PDB:
5QNX
PDB:
5QNY
PDB:
5QNZ
PDB:
5QO0
PDB:
5QO1
PDB:
5QO2
PDB:
5QO3
PDB:
5QO4
PDB:
5QO5
PDB:
5QO6
PDB:
5QO7
PDB:
5QO8
PDB:
5QO9
PDB:
5QOA
PDB:
5QOB
PDB:
5QOC
PDB:
5QOD
PDB:
5QOE
PDB:
5QOF
PDB:
5QOG
PDB:
6BQX
PDB:
6BR4
PDB:
6PBI
PDB:
6PC9
PDB:
6PD7
PDB:
6PDH
PDB:
6PG1
PDB:
6PG2
PDB:
6PGJ
PDB:
6PIQ
PDB:
6PLI
PDB:
6PMF
PDB:
6PML
PDB:
6POH
PDB:
6POI
PDB:
6POQ
PDB:
6PVY
PDB:
6PVZ
PDB:
6WHD
PFAM:
PF01323
PRIDE:
P0AEG4
PRODB:
PRO_000022479
PROSITE:
PS00194
PROSITE:
PS51352
REFSEQ:
NP_418297
SMR:
P0AEG4
SWISSMODEL:
P0AEG4
UNIPROT:
P0AEG4


Operon      
Name: srkA-dsbA         
Operon arrangement:
Transcription unit        Promoter
srkA-dsbA
dsbA


Transcriptional Regulation      
Display Regulation             
Activated by: CpxR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_4528 4043252 forward nd [RS-EPT-CBR] [25]
  promoter TSS_4530 (cluster) 4043383 forward nd [RS-EPT-CBR] [25]
  promoter TSS_4531 4043393 forward nd [RS-EPT-CBR] [25]
  promoter TSS_4532 4043397 forward nd [RS-EPT-CBR] [25]
  promoter yihFp4 4044055 forward nd [ICWHO] [26]
  promoter yihFp6 4044131 forward nd [ICWHO] [26]
  promoter yihFp1 4044175 forward nd [ICWHO] [26]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Beld J., Woycechowsky KJ., Hilvert D., 2010, Small-molecule diselenides catalyze oxidative protein folding in vivo., ACS Chem Biol 5(2):177-82

 [2] Bessette PH., Qiu J., Bardwell JC., Swartz JR., Georgiou G., 2001, Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli., J Bacteriol 183(3):980-8

 [3] Carvalho AT., Fernandes PA., Ramos MJ., 2006, Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA., J Comput Chem 27(8):966-75

 [4] Couprie J., Vinci F., Dugave C., Quemeneur E., Moutiez M., 2000, Investigation of the DsbA mechanism through the synthesis and analysis of an irreversible enzyme-ligand complex., Biochemistry 39(22):6732-42

 [5] Fabianek RA., Hennecke H., Thony-Meyer L., 2000, Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli., FEMS Microbiol Rev 24(3):303-16

 [6] Frech C., Schmid FX., 1995, DsbA-mediated disulfide bond formation and catalyzed prolyl isomerization in oxidative protein folding., J Biol Chem 270(10):5367-74

 [7] Frech C., Wunderlich M., Glockshuber R., Schmid FX., 1996, Preferential binding of an unfolded protein to DsbA., EMBO J 15(2):392-98

 [8] Hennecke J., Spleiss C., Glockshuber R., 1997, Influence of acidic residues and the kink in the active-site helix on the properties of the disulfide oxidoreductase DsbA., J Biol Chem 272(1):189-95

 [9] Joly JC., Swartz JR., 1994, Protein folding activities of Escherichia coli protein disulfide isomerase., Biochemistry 33(14):4231-6

 [10] Jonda S., Huber-Wunderlich M., Glockshuber R., Mossner E., 1999, Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm., EMBO J 18(12):3271-81

 [11] Manjasetty BA., Hennecke J., Glockshuber R., Heinemann U., 2004, Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments., Acta Crystallogr D Biol Crystallogr 60(Pt 2):304-9

 [12] Maskos K., Huber-Wunderlich M., Glockshuber R., 2003, DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo., J Mol Biol 325(3):495-513

 [13] Messens J., Collet JF., Van Belle K., Brosens E., Loris R., Wyns L., 2007, The oxidase DsbA folds a protein with a nonconsecutive disulfide., J Biol Chem 282(43):31302-7

 [14] Moutiez M., Burova TV., Haertle T., Quemeneur E., 1999, On the non-respect of the thermodynamic cycle by DsbA variants., Protein Sci 8(1):106-12

 [15] Ondo-Mbele E., Vives C., Kone A., Serre L., 2005, Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant., J Mol Biol 347(3):555-63

 [16] Regeimbal J., Bardwell JC., 2002, DsbB catalyzes disulfide bond formation de novo., J Biol Chem 277(36):32706-13

 [17] Schirra HJ., Renner C., Czisch M., Huber-Wunderlich M., Holak TA., Glockshuber R., 1998, Structure of reduced DsbA from Escherichia coli in solution., Biochemistry 37(18):6263-76

 [18] Shouldice SR., Cho SH., Boyd D., Heras B., Eser M., Beckwith J., Riggs P., Martin JL., Berkmen M., 2010, In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling., Mol Microbiol 75(1):13-28

 [19] Sone M., Akiyama Y., Ito K., 1997, Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds., J Biol Chem 272(16):10349-52

 [20] Wunderlich M., Glockshuber R., 1993, In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA)., J Biol Chem 268(33):24547-50

 [21] Wunderlich M., Jaenicke R., Glockshuber R., 1993, The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form., J Mol Biol 233(4):559-66

 [22] Wunderlich M., Otto A., Seckler R., Glockshuber R., 1993, Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH., Biochemistry 32(45):12251-6

 [23] Zapun A., Cooper L., Creighton TE., 1994, Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo., Biochemistry 33(7):1907-14

 [24] Zhao Z., Eberhart LJ., Orfe LH., Lu SY., Besser TE., Call DR., 2015, Genome-Wide Screening Identifies Six Genes That Are Associated with Susceptibility to Escherichia coli Microcin PDI., Appl Environ Microbiol 81(20):6953-63

 [25] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.

 [26] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78


RegulonDB