RegulonDB RegulonDB 10.9: Gene Form
   

csgA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

csgA csgB csgC terminator anti-terminator anti-anti-terminator ymdAp5 ymdAp5 ymdAp ymdAp csgAp csgAp

Gene      
Name: csgA    Texpresso search in the literature
Synonym(s): ECK1028, EG11489, b1042
Genome position(nucleotides): 1104447 --> 1104902 Genome Browser
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
51.1
External database links:  
ASAP:
ABE-0003537
CGSC:
30620
ECHOBASE:
EB1452
ECOLIHUB:
csgA
OU-MICROARRAY:
b1042
STRING:
511145.b1042
COLOMBOS: csgA


Product      
Name: curlin, major subunit
Synonym(s): CsgA
Sequence: Get amino acid sequence Fasta Format
Cellular location: pilus
Molecular weight: 15.049
Isoelectric point: 4.889
Motif(s):
 
Type Positions Sequence
54 -> 54 N
111 -> 132 SEMTVKQFGGGNGAAVDQTASN
1 -> 22 MKLLKVAAIAAIVFSGSALAGV
21 -> 151 GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQTDARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGAAVDQTASNSSVNVTQVGFGNNATAHQY
49 -> 49 Q

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.6 - biosynthesis of macromolecules (cellular constituents) --> 1.6.13 - fimbri, pili
  5 - cell processes --> 5.10 - defense/survival
Gene Ontology Terms (GO)  
cellular_component GO:0009289 - pilus
molecular_function GO:0005515 - protein binding
GO:0042802 - identical protein binding
biological_process GO:0007155 - cell adhesion
GO:0044010 - single-species biofilm formation
Note(s): Note(s): ...[more].
Evidence: [IDA] Inferred from direct assay
Reference(s): [1] Arnqvist A., et al., 1992
[2] Balistreri A., et al., 2020
[3] Chapman MR., et al., 2002
[4] DeBenedictis EP., et al., 2016
[5] Hammer ND., et al., 2007
[6] Kan A., et al., 2019
[7] Klein RD., et al., 2018
[8] Li Y., et al., 2020
[9] Loferer H., et al., 1997
[10] Olsen A., et al., 1993
[11] Perov S., et al., 2019
[12] Samoilova Z., et al., 2019
[13] Sugimoto S., et al., 2018
[14] Swasthi HM., et al., 2018
[15] Yan Z., et al., 2020
External database links:  
DIP:
DIP-9325N
ECOCYC:
EG11489-MONOMER
ECOLIWIKI:
b1042
INTERPRO:
IPR009742
PDB:
6G8C
PDB:
6G9G
PDB:
6G8E
PDB:
6G8D
PFAM:
PF07012
PRIDE:
P28307
PRODB:
PRO_000022336
REFSEQ:
NP_415560
SMR:
P28307
UNIPROT:
P28307


Operon      
Name: csgBAC         
Operon arrangement:
Transcription unit        Promoter
csgBAC
csgBAC
csgA
csgC


Transcriptional Regulation      
Display Regulation             
Activated by: CsgD, BolA
Repressed by: FliZ, CpxR, BtsR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter ymdAp5 1105225 forward Similarity to the consensus
Read more >
[ICWHO] [16]


Evidence    

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Arnqvist A., Olsen A., Pfeifer J., Russell DG., Normark S., 1992, The Crl protein activates cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101., Mol Microbiol 6(17):2443-52

 [2] Balistreri A., Kahana E., Janakiraman S., Chapman MR., 2020, Tuning Functional Amyloid Formation Through Disulfide Engineering., Front Microbiol 11:944

 [3] Chapman MR., Robinson LS., Pinkner JS., Roth R., Heuser J., Hammar M., Normark S., Hultgren SJ., 2002, Role of Escherichia coli curli operons in directing amyloid fiber formation., Science 295(5556):851-5

 [4] DeBenedictis EP., Liu J., Keten S., 2016, Adhesion mechanisms of curli subunit CsgA to abiotic surfaces., Sci Adv 2(11):e1600998

 [5] Hammer ND., Schmidt JC., Chapman MR., 2007, The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization., Proc Natl Acad Sci U S A 104(30):12494-9

 [6] Kan A., Birnbaum DP., Praveschotinunt P., Joshi NS., 2019, Congo Red Fluorescence for Rapid In Situ Characterization of Synthetic Curli Systems., Appl Environ Microbiol 85(13)

 [7] Klein RD., Shu Q., Cusumano ZT., Nagamatsu K., Gualberto NC., Lynch AJL., Wu C., Wang W., Jain N., Pinkner JS., Amarasinghe GK., Hultgren SJ., Frieden C., Chapman MR., 2018, Structure-Function Analysis of the Curli Accessory Protein CsgE Defines Surfaces Essential for Coordinating Amyloid Fiber Formation., MBio 9(4)

 [8] Li Y., Li K., Wang X., Cui M., Ge P., Zhang J., Qiu F., Zhong C., 2020, Conformable self-assembling amyloid protein coatings with genetically programmable functionality., Sci Adv 6(21):eaba1425

 [9] Loferer H., Hammar M., Normark S., 1997, Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG., Mol Microbiol 26(1):11-23

 [10] Olsen A., Arnqvist A., Hammar M., Sukupolvi S., Normark S., 1993, The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli., Mol Microbiol 7(4):523-36

 [11] Perov S., Lidor O., Salinas N., Golan N., Tayeb-Fligelman E., Deshmukh M., Willbold D., Landau M., 2019, Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents., PLoS Pathog 15(8):e1007978

 [12] Samoilova Z., Tyulenev A., Muzyka N., Smirnova G., Oktyabrsky O., 2019, Tannic and gallic acids alter redox-parameters of the medium and modulate biofilm formation., AIMS Microbiol 5(4):379-392

 [13] Sugimoto S., Arita-Morioka KI., Terao A., Yamanaka K., Ogura T., Mizunoe Y., 2018, Multitasking of Hsp70 chaperone in the biogenesis of bacterial functional amyloids., Commun Biol 1:52

 [14] Swasthi HM., Bhasne K., Mahapatra S., Mukhopadhyay S., 2018, Human Fibrinogen Inhibits Amyloid Assembly of Biofilm-Forming CsgA., Biochemistry 57(44):6270-6273

 [15] Yan Z., Yin M., Chen J., Li X., 2020, Assembly and substrate recognition of curli biogenesis system., Nat Commun 11(1):241

 [16] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78


RegulonDB