RegulonDB RegulonDB 11.1: Gene Form
   

hypF gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

hypF norW hydN C0664 norV Cra hypFp3 hypFp3 hypFp2 hypFp2

Gene      
Name: hypF    Texpresso search in the literature
Synonym(s): ECK2707, EG11551, b2712, hydA
Genome position(nucleotides): 2835173 <-- 2837425
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
57.61
External database links:  
ASAP:
ABE-0008915
CGSC:
18232
ECHOBASE:
EB1512
ECOLIHUB:
hypF
OU-MICROARRAY:
b2712
STRING:
511145.b2712
COLOMBOS: hypF


Product      
Name: carbamoyl--[HypE] ligase
Synonym(s): HydA, HypF, carbamoyltransferase HypF, hydrogenase maturation protein
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 82.066
Isoelectric point: 6.402
Motif(s):
 
Type Positions Sequence Comment
8 -> 92 GVQLRIRGKVQGVGFRPFVWQLAQQLNLHGDVCNDGDGVEVRLREDPETFLVQLYQHCPPLARIDSVEREPFIWSQLPTEFTIRQ UniProt: Acylphosphatase-like.
10 -> 78 QLRIRGKVQGVGFRPFVWQLAQQLNLHGDVCNDGDGVEVRLREDPETFLVQLYQHCPPLARIDSVEREP
19 -> 23 GVGFR UniProt: Substrate binding; Sequence Annotation Type: region of interest.
23 -> 23 R UniProt: Loss of activity..
31 -> 32 QQ UniProt: In Ref. 1; BAA03315..

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.3 - energy metabolism, carbon --> 1.3.7 - anaerobic respiration
  2 - information transfer --> 2.3 - protein related --> 2.3.3 - posttranslational modification
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
GO:1904949 - ATPase complex
molecular_function GO:0005515 - protein binding
GO:0046872 - metal ion binding
GO:0016874 - ligase activity
GO:0008270 - zinc ion binding
GO:0016743 - carboxyl- or carbamoyltransferase activity
GO:0003725 - double-stranded RNA binding
biological_process GO:0051604 - protein maturation
GO:0046892 - peptidyl-S-carbamoyl-L-cysteine dehydration
GO:0046944 - protein carbamoylation
Note(s): Note(s): ...[more].
Reference(s): [1] Blbulyan S., et al., 2015
[2] Gevorgyan H., et al., 2018
[3] Lee JH., et al., 1985
[4] Pascal MC., et al., 1975
[5] Petkun S., et al., 2011
[6] Sankar P., et al., 1985
[7] Soboh B., et al., 2014
[8] Stripp ST., et al., 2015
[9] Trchounian K., et al., 2013
External database links:  
ALPHAFOLD:
P30131
DIP:
DIP-10000N
ECOCYC:
EG11551-MONOMER
ECOLIWIKI:
b2712
INTERPRO:
IPR006070
INTERPRO:
IPR001792
INTERPRO:
IPR041440
INTERPRO:
IPR011125
INTERPRO:
IPR017945
INTERPRO:
IPR017968
INTERPRO:
IPR036046
INTERPRO:
IPR004421
MODBASE:
P30131
PDB:
1GXT
PDB:
1GXU
PFAM:
PF00708
PFAM:
PF01300
PFAM:
PF07503
PFAM:
PF17788
PRIDE:
P30131
PRODB:
PRO_000022977
PROSITE:
PS00150
PROSITE:
PS51160
PROSITE:
PS51163
REFSEQ:
NP_417192
SMR:
P30131
UNIPROT:
P30131


Operon      
Name: hydN-hypF         
Operon arrangement:
Transcription unit        Promoter
hypF
hypF
hydN-hypF
hypF


Transcriptional Regulation      
Display Regulation             
Activated by: FhlA, FlhDC
Repressed by: Cra


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Blbulyan S., Trchounian A., 2015, Impact of membrane-associated hydrogenases on the F0F1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: ATPase activity and its inhibition by N,N'-dicyclohexylcarbodiimide in the mutants lacking hydrogenases., Arch Biochem Biophys 579:67-72

 [2] Gevorgyan H., Trchounian A., Trchounian K., 2018, Understanding the Role of Escherichia coli Hydrogenases and Formate Dehydrogenases in the FO F1 -ATPase Activity during the Mixed Acid Fermentation of Mixture of Carbon Sources., IUBMB Life 70(10):1040-1047

 [3] Lee JH., Patel P., Sankar P., Shanmugam KT., 1985, Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism., J Bacteriol 162(1):344-52

 [4] Pascal MC., Casse F., Chippaux M., Lepelletier M., 1975, Genetic analysis of mutants of Escherichia coli K12 and Salmonella typhimurium LT2 deficient in hydrogenase activity., Mol Gen Genet 141(2):173-9

 [5] Petkun S., Shi R., Li Y., Asinas A., Munger C., Zhang L., Waclawek M., Soboh B., Sawers RG., Cygler M., 2011, Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites., Structure 19(12):1773-83

 [6] Sankar P., Lee JH., Shanmugam KT., 1985, Cloning of hydrogenase genes and fine structure analysis of an operon essential for H2 metabolism in Escherichia coli., J Bacteriol 162(1):353-60

 [7] Soboh B., Lindenstrauss U., Granich C., Javed M., Herzberg M., Thomas C., Stripp ST., 2014, [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1., Biochem J 464(2):169-77

 [8] Stripp ST., Lindenstrauss U., Sawers RG., Soboh B., 2015, Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation., PLoS One 10(7):e0133118

 [9] Trchounian K., Blbulyan S., Trchounian A., 2013, Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation., J Bioenerg Biomembr 45(3):253-60


RegulonDB