RegulonDB RegulonDB 10.9: Gene Form
   

glpG gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

rtcR glpG glpR glpE glpGp glpGp glpRp1 glpRp1 glpRp2 glpRp2

Gene      
Name: glpG    Texpresso search in the literature
Synonym(s): ECK3410, EG10397, b3424
Genome position(nucleotides): 3560622 <-- 3561452 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
54.15
External database links:  
ASAP:
ABE-0011179
CGSC:
18262
ECHOBASE:
EB0392
ECOLIHUB:
glpG
OU-MICROARRAY:
b3424
STRING:
511145.b3424
COLOMBOS: glpG


Product      
Name: rhomboid protease GlpG
Synonym(s): GlpG, intramembrane serine protease
Sequence: Get amino acid sequence Fasta Format
Cellular location: inner membrane
Molecular weight: 31.307
Isoelectric point: 9.472
Motif(s):
 
Type Positions Sequence
1 -> 82 MLMITSFANPRVAQAFVDYMATQGVILTIQQHNQSDVWLADESQAERVRAELARFLENPADPRYLAASWQAGHTGSGLHYRR
147 -> 168 SLMHILFNLLWWWYLGGAVEKR
199 -> 199 G
132 -> 269 KFEFWRYFTHALMHFSLMHILFNLLWWWYLGGAVEKRLGSGKLIVITLISALLSGYVQQKFSGPWFGGLSGVVYALMGYVWLRGERDPQSGIYLQRGLIIFALIWIVAGWFDLFGMSMANGAHIAGLAVGLAMAFVDS
201 -> 201 S

 

Classification:
Multifun Terms (GenProtEC)  
  6 - cell structure --> 6.1 - membrane
Gene Ontology Terms (GO)  
cellular_component GO:0016020 - membrane
GO:0005886 - plasma membrane
GO:0005887 - integral component of plasma membrane
GO:0016021 - integral component of membrane
molecular_function GO:0008233 - peptidase activity
GO:0016787 - hydrolase activity
GO:0004175 - endopeptidase activity
GO:0004252 - serine-type endopeptidase activity
GO:0008236 - serine-type peptidase activity
GO:0042802 - identical protein binding
biological_process GO:0006508 - proteolysis
Note(s): Note(s): ...[more].
Reference(s): [1] Arutyunova E., et al., 2014
[2] Clemmer KM., et al., 2006
[3] Dalbey RE., et al., 2012
[4] Foo AC., et al., 2015
[5] Ghasriani H., et al., 2014
[6] Guo R., et al., 2020
[7] Guo R., et al., 2016
[8] Ha Y. 2007
[9] Koonin EV., et al., 2003
[10] Lazareno-Saez C., et al., 2013
[11] Lemberg MK., et al., 2007
[12] Maegawa S., et al., 2007
[13] Min D., et al., 2015
[14] Moin SM., et al., 2012
[15] Paslawski W., et al., 2015
[16] Pierrat OA., et al., 2011
[17] Reddy T., et al., 2012
[18] Russell CW., et al., 2017
[19] Sampathkumar P., et al., 2012
[20] Schafer NP., et al., 2016
[21] Strisovsky K. 2016
[22] Ticha A., et al., 2017
[23] Urban S., et al., 2011
[24] Uritsky N., et al., 2012
[25] Vinothkumar KR. 2011
[26] Wolf EV., et al., 2015
[27] Wolf EV., et al., 2016
[28] Wolf EV., et al., 2015
[29] Zhou Y., et al., 2012
External database links:  
DIP:
DIP-9796N
ECOCYC:
EG10397-MONOMER
ECOLIWIKI:
b3424
INTERPRO:
IPR022764
INTERPRO:
IPR023662
INTERPRO:
IPR035952
INTERPRO:
IPR038236
INTERPRO:
IPR022732
MINT:
P09391
PDB:
3B45
PDB:
3TXT
PDB:
3UBB
PDB:
3ZEB
PDB:
3ZMH
PDB:
3ZMI
PDB:
3ZMJ
PDB:
3ZOT
PDB:
4H1D
PDB:
4HDD
PDB:
4NJN
PDB:
4NJP
PDB:
5F5B
PDB:
5F5D
PDB:
5F5G
PDB:
5F5J
PDB:
5F5K
PDB:
5MT6
PDB:
5MT7
PDB:
5MT8
PDB:
6PJ4
PDB:
6PJ5
PDB:
6PJ7
PDB:
6PJ8
PDB:
6PJ9
PDB:
6PJA
PDB:
6PJP
PDB:
6PJQ
PDB:
6PJR
PDB:
6PJU
PDB:
3B44
PDB:
2XTV
PDB:
2XTU
PDB:
2XOW
PDB:
2XOV
PDB:
2O7L
PDB:
2NRF
PDB:
2LEP
PDB:
2IRV
PDB:
2IC8
PFAM:
PF01694
PFAM:
PF12122
PRIDE:
P09391
PRODB:
PRO_000022798
REFSEQ:
YP_026220
SMR:
P09391
UNIPROT:
P09391


Operon      
Name: glpEGR         
Operon arrangement:
Transcription unit        Promoter
glpR
glpR
glpGR
glpEGR


Transcriptional Regulation      
Display Regulation             
Activated by: CRP


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Arutyunova E., Panwar P., Skiba PM., Gale N., Mak MW., Lemieux MJ., 2014, Allosteric regulation of rhomboid intramembrane proteolysis., EMBO J 33(17):1869-81

 [2] Clemmer KM., Sturgill GM., Veenstra A., Rather PN., 2006, Functional characterization of Escherichia coli GlpG and additional rhomboid proteins using an aarA mutant of Providencia stuartii., J Bacteriol 188(9):3415-9

 [3] Dalbey RE., Wang P., van Dijl JM., 2012, Membrane proteases in the bacterial protein secretion and quality control pathway., Microbiol Mol Biol Rev 76(2):311-30

 [4] Foo AC., Harvey BG., Metz JJ., Goto NK., 2015, Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease., Protein Sci 24(4):464-73

 [5] Ghasriani H., Kwok JK., Sherratt AR., Foo AC., Qureshi T., Goto NK., 2014, Micelle-catalyzed domain swapping in the GlpG rhomboid protease cytoplasmic domain., Biochemistry 53(37):5907-15

 [6] Guo R., Cang Z., Yao J., Kim M., Deans E., Wei G., Kang SG., Hong H., 2020, Structural cavities are critical to balancing stability and activity of a membrane-integral enzyme., Proc Natl Acad Sci U S A 117(36):22146-22156

 [7] Guo R., Gaffney K., Yang Z., Kim M., Sungsuwan S., Huang X., Hubbell WL., Hong H., 2016, Steric trapping reveals a cooperativity network in the intramembrane protease GlpG., Nat Chem Biol 12(5):353-360

 [8] Ha Y., 2007, Structural principles of intramembrane proteases., Curr Opin Struct Biol 17(4):405-11

 [9] Koonin EV., Makarova KS., Rogozin IB., Davidovic L., Letellier MC., Pellegrini L., 2003, The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers., Genome Biol 4(3):R19

 [10] Lazareno-Saez C., Arutyunova E., Coquelle N., Lemieux MJ., 2013, Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease., J Mol Biol 425(7):1127-42

 [11] Lemberg MK., Freeman M., 2007, Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases., Genome Res 17(11):1634-46

 [12] Maegawa S., Koide K., Ito K., Akiyama Y., 2007, The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates., Mol Microbiol 64(2):435-47

 [13] Min D., Jefferson RE., Bowie JU., Yoon TY., 2015, Mapping the energy landscape for second-stage folding of a single membrane protein., Nat Chem Biol 11(12):981-7

 [14] Moin SM., Urban S., 2012, Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics., Elife 1:e00173

 [15] Paslawski W., Lillelund OK., Kristensen JV., Schafer NP., Baker RP., Urban S., Otzen DE., 2015, Cooperative folding of a polytopic α-helical membrane protein involves a compact N-terminal nucleus and nonnative loops., Proc Natl Acad Sci U S A 112(26):7978-83

 [16] Pierrat OA., Strisovsky K., Christova Y., Large J., Ansell K., Bouloc N., Smiljanic E., Freeman M., 2011, Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases., ACS Chem Biol 6(4):325-35

 [17] Reddy T., Rainey JK., 2012, Multifaceted substrate capture scheme of a rhomboid protease., J Phys Chem B 116(30):8942-54

 [18] Russell CW., Richards AC., Chang AS., Mulvey MA., 2017, The Rhomboid Protease GlpG Promotes the Persistence of Extraintestinal Pathogenic Escherichia coli within the Gut., Infect Immun 85(6)

 [19] Sampathkumar P., Mak MW., Fischer-Witholt SJ., Guigard E., Kay CM., Lemieux MJ., 2012, Oligomeric state study of prokaryotic rhomboid proteases., Biochim Biophys Acta 1818(12):3090-7

 [20] Schafer NP., Truong HH., Otzen DE., Lindorff-Larsen K., Wolynes PG., 2016, Topological constraints and modular structure in the folding and functional motions of GlpG, an intramembrane protease., Proc Natl Acad Sci U S A 113(8):2098-103

 [21] Strisovsky K., 2016, Why cells need intramembrane proteases - a mechanistic perspective., FEBS J 283(10):1837-45

 [22] Ticha A., Stanchev S., Skerle J., Began J., Ingr M., Svehlova K., Polovinkin L., Ruzicka M., Bednarova L., Hadravova R., Polachova E., Rampirova P., Brezinova J., Kasicka V., Majer P., Strisovsky K., 2017, Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases., J Biol Chem 292(7):2703-2713

 [23] Urban S., Dickey SW., 2011, The rhomboid protease family: a decade of progress on function and mechanism., Genome Biol 12(10):231

 [24] Uritsky N., Shokhen M., Albeck A., 2012, The Catalytic Machinery of Rhomboid Proteases: Combined MD and QM Simulations., J Chem Theory Comput 8(11):4663-71

 [25] Vinothkumar KR., 2011, Structure of rhomboid protease in a lipid environment., J Mol Biol 407(2):232-47

 [26] Wolf EV., Seybold M., Hadravova R., Strisovsky K., Verhelst SH., 2015, Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes., Chembiochem 16(11):1616-21

 [27] Wolf EV., Verhelst SH., 2016, Inhibitors of rhomboid proteases., Biochimie 122:38-47

 [28] Wolf EV., Zeissler A., Verhelst SH., 2015, Inhibitor Fingerprinting of Rhomboid Proteases by Activity-Based Protein Profiling Reveals Inhibitor Selectivity and Rhomboid Autoprocessing., ACS Chem Biol 10(10):2325-33

 [29] Zhou Y., Moin SM., Urban S., Zhang Y., 2012, An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency., Structure 20(7):1255-63


RegulonDB