RegulonDB RegulonDB 10.10: Gene Form
   

grxA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

ybjM ybjC grxA nfsA SoxS Rob MarA OxyR SoxS OxyR OxyR ybjCp ybjCp grxAp grxAp

Gene      
Name: grxA    Texpresso search in the literature
Synonym(s): ECK0840, EG10417, b0849, grx
Genome position(nucleotides): 890496 <-- 890753 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
44.96
External database links:  
ASAP:
ABE-0002893
CGSC:
17683
ECHOBASE:
EB0412
ECOLIHUB:
grxA
OU-MICROARRAY:
b0849
STRING:
511145.b0849
COLOMBOS: grxA


Product      
Name: reduced glutaredoxin 1
Synonym(s): Grx, Grx1, GrxA, glutaredoxin 1
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 9.685
Isoelectric point: 4.571
Motif(s):
 
Type Positions Sequence
1 -> 85 MQTVIFGRSGCPYCVRAKDLAEKLSNERDDFQYQYVDIRAEGITKEDLQQKAGKPVETVPQIFVDQQHIGGYTDFAAWVKENLDA
14 -> 14 C
15 -> 15 V
10 -> 10 G
13 -> 13 Y

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.6 - biosynthesis of macromolecules (cellular constituents) --> 1.6.15 - large molecule carriers --> 1.6.15.2 - thioredoxin, glutaredoxin
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0019153 - protein-disulfide reductase (glutathione) activity
GO:0009055 - electron transfer activity
GO:0000166 - nucleotide binding
GO:0015036 - disulfide oxidoreductase activity
GO:0015035 - protein-disulfide reductase activity
biological_process GO:0019345 - cysteine biosynthetic process via S-sulfo-L-cysteine
GO:0010134 - sulfate assimilation via adenylyl sulfate reduction
GO:0009263 - deoxyribonucleotide biosynthetic process
GO:0045454 - cell redox homeostasis
GO:0022900 - electron transport chain
GO:0034599 - cellular response to oxidative stress
Note(s): Note(s): ...[more].
Evidence: [APPHINH] Assay of protein purified to homogeneity from its native host
Reference(s): [1] Aberg A., et al., 1989
[2] Allner O., et al., 2015
[3] Bhomkar P., et al., 2010
[4] Casi G., et al., 2008
[5] Cole R., et al., 2003
[6] Daer S., et al., 2020
[7] Dyson HJ. 1995
[8] Eklund H., et al., 1984
[9] Eser M., et al., 2009
[10] Fernandes AP., et al., 2005
[11] Fetrow JS., et al., 1998
[12] Flandrin A., et al., 2015
[13] Fuchs JA. 1995
[14] Gelhaye E., et al., 2003
[15] Harrison JJ., et al., 2009
[16] Holmgren A. 1988
[17] Holmgren A. 1979
[18] Holmgren A. 1979
[19] Holmgren A. 1985
[20] Holmgren A., et al., 1995
[21] Hoog JO., et al., 1982
[22] Hoog JO., et al., 1982
[23] Hoog JO., et al., 1986
[24] Lillig CH., et al., 2003
[25] Liu J., et al., 1997
[26] Luginbuhl P., et al., 1996
[27] Lundstrom-Ljung J., et al., 1995
[28] Lundstrom-Ljung J., et al., 1999
[29] Miranda-Vizuete A., et al., 1994
[30] Nagahara N. 2020
[31] Nygren H., et al., 1981
[32] Parsonage D., et al., 2010
[33] Porras P., et al., 2002
[34] Pueyo C., et al., 2002
[35] Shi J., et al., 1999
[36] Smirnova G., et al., 2016
[37] Ukuwela AA., et al., 2017
[38] Uria-Nickelsen MR., et al., 1993
[39] Vlamis-Gardikas A., et al., 2002
[40] Vrionis HA., et al., 2015
[41] Wurfel M., et al., 1993
External database links:  
DISPROT:
DP01740
ECOCYC:
RED-GLUTAREDOXIN
ECOLIWIKI:
b0849
INTERPRO:
IPR036249
INTERPRO:
IPR014025
INTERPRO:
IPR002109
INTERPRO:
IPR011767
INTERPRO:
IPR011902
MODBASE:
P68688
PDB:
1UQN
PDB:
1UQH
PDB:
1UQ7
PDB:
1UQ6
PDB:
1UQ3
PDB:
1UQ2
PDB:
1UQ1
PDB:
1UQ0
PDB:
1EGO
PDB:
1EGR
PDB:
1GRX
PDB:
1QFN
PDB:
1UPY
PDB:
1UPZ
PFAM:
PF00462
PRIDE:
P68688
PRINTS:
PR00160
PROSITE:
PS51354
PROSITE:
PS00195
REFSEQ:
NP_415370
SMR:
P68688
UNIPROT:
P68688


Operon      
Name: grxA         
Operon arrangement:
Transcription unit        Promoter
grxA


Transcriptional Regulation      
Display Regulation             
Activated by: OxyR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Aberg A., Hahne S., Karlsson M., Larsson A., Ormo M., Ahgren A., Sjoberg BM., 1989, Evidence for two different classes of redox-active cysteines in ribonucleotide reductase of Escherichia coli., J Biol Chem 264(21):12249-52

 [2] Allner O., Foloppe N., Nilsson L., 2015, Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations., J Phys Chem B 119(3):1114-28

 [3] Bhomkar P., Materi W., Semenchenko V., Wishart DS., 2010, Transcriptional response of E. coli upon FimH-mediated fimbrial adhesion., Gene Regul Syst Bio 4:1-17

 [4] Casi G., Roelfes G., Hilvert D., 2008, Selenoglutaredoxin as a glutathione peroxidase mimic., Chembiochem 9(10):1623-31

 [5] Cole R., Loria JP., 2003, FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data., J Biomol NMR 26(3):203-13

 [6] Daer S., Goodwill JE., Ikuma K., 2020, Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase., Water Res 189:116580

 [7] Dyson HJ., 1995, Nuclear magnetic resonance of thioredoxin and glutaredoxin., Methods Enzymol 252:293-306

 [8] Eklund H., Cambillau C., Sjoberg BM., Holmgren A., Jornvall H., Hoog JO., Branden CI., 1984, Conformational and functional similarities between glutaredoxin and thioredoxins., EMBO J 3(7):1443-9

 [9] Eser M., Masip L., Kadokura H., Georgiou G., Beckwith J., 2009, Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm., Proc Natl Acad Sci U S A 106(5):1572-7

 [10] Fernandes AP., Fladvad M., Berndt C., Andresen C., Lillig CH., Neubauer P., Sunnerhagen M., Holmgren A., Vlamis-Gardikas A., 2005, A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase., J Biol Chem 280(26):24544-52

 [11] Fetrow JS., Godzik A., Skolnick J., 1998, Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity., J Mol Biol 282(4):703-11

 [12] Flandrin A., Allouche S., Rolland Y., McDuff FO., Richard Wagner J., Klarskov K., 2015, Characterization of dehydroascorbate-mediated modification of glutaredoxin by mass spectrometry., J Mass Spectrom 50(12):1358-66

 [13] Fuchs JA., 1995, Glutathione mutants., Methods Enzymol 252:83-92

 [14] Gelhaye E., Rouhier N., Jacquot JP., 2003, Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction., FEBS Lett 555(3):443-8

 [15] Harrison JJ., Tremaroli V., Stan MA., Chan CS., Vacchi-Suzzi C., Heyne BJ., Parsek MR., Ceri H., Turner RJ., 2009, Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance., Environ Microbiol 11(10):2491-509

 [16] Holmgren A., 1988, Thioredoxin and glutaredoxin: small multi-functional redox proteins with active-site disulphide bonds., Biochem Soc Trans 16(2):95-6

 [17] Holmgren A., 1979, Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin., J Biol Chem 254(9):3672-8

 [18] Holmgren A., 1979, Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli., J Biol Chem 254(9):3664-71

 [19] Holmgren A., 1985, Glutaredoxin from Escherichia coli and calf thymus., Methods Enzymol 113:525-40

 [20] Holmgren A., Aslund F., 1995, Glutaredoxin., Methods Enzymol 252:283-92

 [21] Hoog JO., Douglas KT., D'Silva C., Holmgren A., 1982, Photo-labelling of glutaredoxin from Escherichia coli., Biochem Biophys Res Commun 107(4):1475-81

 [22] Hoog JO., Holmgren A., D'Silva C., Douglas KT., Seddon AP., 1982, Glutathione derivatives as inhibitors of glutaredoxin and ribonucleotide reductase from Escherichia coli., FEBS Lett 138(1):59-61

 [23] Hoog JO., von Bahr-Lindstrom H., Jornvall H., Holmgren A., 1986, Cloning and expression of the glutaredoxin (grx) gene of Escherichia coli., Gene 43(1-2):13-21

 [24] Lillig CH., Potamitou A., Schwenn JD., Vlamis-Gardikas A., Holmgren A., 2003, Redox regulation of 3'-phosphoadenylylsulfate reductase from Escherichia coli by glutathione and glutaredoxins., J Biol Chem 278(25):22325-30

 [25] Liu J., Rosen BP., 1997, Ligand interactions of the ArsC arsenate reductase., J Biol Chem 272(34):21084-9

 [26] Luginbuhl P., Guntert P., Billeter M., Wuthrich K., 1996, The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules., J Biomol NMR 8(2):136-46

 [27] Lundstrom-Ljung J., Holmgren A., 1995, Glutaredoxin accelerates glutathione-dependent folding of reduced ribonuclease A together with protein disulfide-isomerase., J Biol Chem 270(14):7822-8

 [28] Lundstrom-Ljung J., Vlamis-Gardikas A., Aslund F., Holmgren A., 1999, Reactivity of glutaredoxins 1, 2 and 3 from Escherichia coli and protein disulfide isomerase towards glutathionyl-mixed disulfides in ribonuclease A., FEBS Lett 443(2):85-8

 [29] Miranda-Vizuete A., Martinez-Galisteo E., Aslund F., Lopez-Barea J., Pueyo C., Holmgren A., 1994, Null thioredoxin and glutaredoxin Escherichia coli K-12 mutants have no enhanced sensitivity to mutagens due to a new GSH-dependent hydrogen donor and high increases in ribonucleotide reductase activity., J Biol Chem 269(24):16631-7

 [30] Nagahara N., 2020, Activation of 3-Mercaptopyruvate Sulfurtransferase by Glutaredoxin Reducing System., Biomolecules 10(6)

 [31] Nygren H., Rozell B., Holmgren A., Hansson HA., 1981, Immunoelectron microscopic localization of glutaredoxin and thioredoxin in Escherichia coli cells., FEBS Lett 133(1):145-50

 [32] Parsonage D., Reeves SA., Karplus PA., Poole LB., 2010, Engineering of fluorescent reporters into redox domains to monitor electron transfers., Methods Enzymol 474:1-21

 [33] Porras P., Pedrajas JR., Martinez-Galisteo E., Padilla CA., Johansson C., Holmgren A., Barcena JA., 2002, Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency., Biochem Biophys Res Commun 295(5):1046-51

 [34] Pueyo C., Jurado J., Prieto-Alamo MJ., Monje-Casas F., Lopez-Barea J., 2002, Multiplex reverse transcription-polymerase chain reaction for determining transcriptional regulation of thioredoxin and glutaredoxin pathways., Methods Enzymol 347:441-51

 [35] Shi J., Vlamis-Gardikas A., Aslund F., Holmgren A., Rosen BP., 1999, Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction., J Biol Chem 274(51):36039-42

 [36] Smirnova G., Muzyka N., Lepekhina E., Oktyabrsky O., 2016, Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli responses to ciprofloxacin and ampicillin., Arch Microbiol 198(9):913-21

 [37] Ukuwela AA., Bush AI., Wedd AG., Xiao Z., 2017, Reduction potentials of protein disulfides and catalysis of glutathionylation and deglutathionylation by glutaredoxin enzymes., Biochem J 474(22):3799-3815

 [38] Uria-Nickelsen MR., Leadbetter ER., Godchaux W., 1993, Sulphonate utilization by enteric bacteria., J Gen Microbiol 139(2):203-8

 [39] Vlamis-Gardikas A., Holmgren A., 2002, Thioredoxin and glutaredoxin isoforms., Methods Enzymol 347:286-96

 [40] Vrionis HA., Wang S., Haslam B., Turner RJ., 2015, Selenite Protection of Tellurite Toxicity Toward Escherichia coli., Front Mol Biosci 2:69

 [41] Wurfel M., Haberlein I., Follmann H., 1993, Facile sulfitolysis of the disulfide bonds in oxidized thioredoxin and glutaredoxin., Eur J Biochem 211(3):609-14


RegulonDB