RegulonDB RegulonDB 10.10: Gene Form
   

rplI gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

yjfZ rplI rpsR TSS_5061 (cluster) TSS_5061 (cluster)

Gene      
Name: rplI    Texpresso search in the literature
Synonym(s): ECK4199, EG10870, b4203
Genome position(nucleotides): 4426108 --> 4426557 Genome Browser
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
49.78
External database links:  
ASAP:
ABE-0013746
CGSC:
257
ECHOBASE:
EB0863
ECOLIHUB:
rplI
OU-MICROARRAY:
b4203
STRING:
511145.b4203
COLOMBOS: rplI


Product      
Name: 50S ribosomal subunit protein L9
Synonym(s): RplI
Sequence: Get amino acid sequence Fasta Format
Cellular location: ribosome,cytosol
Molecular weight: 15.769
Isoelectric point: 6.547
Motif(s):
 
Type Positions Sequence
125 -> 128 TGEH
1 -> 45 MQVILLDKVANLGSLGDQVNVKAGYARNFLVPQGKAVPATKKNIE
106 -> 106 A
136 -> 136 S
64 -> 148 AANARAEKINALETVTIASKAGDEGKLFGSIGTRDIADAVTAAGVEVAKSEVRLPNGVLRTTGEHEVSFQVHSEVFAKVIVNVVA

 

Classification:
Multifun Terms (GenProtEC)  
  2 - information transfer --> 2.3 - protein related --> 2.3.2 - translation
  2 - information transfer --> 2.3 - protein related --> 2.3.8 - ribosomal proteins
  6 - cell structure --> 6.6 - ribosomes
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
GO:0005840 - ribosome
GO:0022625 - cytosolic large ribosomal subunit
molecular_function GO:0003735 - structural constituent of ribosome
GO:0005515 - protein binding
GO:0003723 - RNA binding
GO:0019843 - rRNA binding
GO:0070180 - large ribosomal subunit rRNA binding
biological_process GO:0006412 - translation
Note(s): Note(s): ...[more].
Reference(s): [1] Abdurashidova GG., et al., 1985
[2] Al-Majdoub ZM., et al., 2013
[3] Branlant C., et al., 1976
[4] Branlant C., et al., 1977
[5] Dunkle JA., et al., 2011
[6] Gordiyenko Y., et al., 2008
[7] Hwang J., et al., 2006
[8] Isono K., et al., 1978
[9] Kakegawa T., et al., 1986
[10] Kamp RM., et al., 1983
[11] Kitakawa M., et al., 1980
[12] Kuroda A., et al., 2001
[13] Morrison CA., et al., 1977
[14] Moureau P., et al., 1983
[15] Nag B., et al., 1991
[16] Osswald M., et al., 1990
[17] Robertson WR., et al., 1977
[18] Sato S., et al., 2001
[19] Schnier J., et al., 1986
[20] Schuwirth BS., et al., 2005
[21] Seidman JS., et al., 2011
[22] Stoffler-Meilicke M., et al., 1983
[23] Subramanian AR., et al., 1977
[24] Traut RR., et al., 1983
[25] Vladimirov SN., et al., 1985
External database links:  
DIP:
DIP-35748N
ECOCYC:
EG10870-MONOMER
ECOLIWIKI:
b4203
INTERPRO:
IPR009027
INTERPRO:
IPR000244
INTERPRO:
IPR020069
INTERPRO:
IPR036935
INTERPRO:
IPR020070
INTERPRO:
IPR020594
INTERPRO:
IPR036791
MODBASE:
P0A7R1
PANTHER:
PTHR21368
PDB:
2J28
PDB:
2RDO
PDB:
3BBX
PDB:
3J5L
PDB:
3J7Z
PDB:
3J8G
PDB:
3J9Y
PDB:
3J9Z
PDB:
3JA1
PDB:
3JBU
PDB:
3JBV
PDB:
3JCD
PDB:
3JCE
PDB:
3JCJ
PDB:
3JCN
PDB:
487D
PDB:
4CSU
PDB:
4U1U
PDB:
4U1V
PDB:
4U20
PDB:
4U24
PDB:
4U25
PDB:
4U26
PDB:
4U27
PDB:
4UY8
PDB:
4V47
PDB:
4V48
PDB:
4V4H
PDB:
4V4Q
PDB:
4V4V
PDB:
4V4W
PDB:
4V50
PDB:
4V52
PDB:
4V53
PDB:
4V54
PDB:
4V55
PDB:
4V56
PDB:
4V57
PDB:
4V5B
PDB:
4V5H
PDB:
4V5Y
PDB:
4V64
PDB:
4V65
PDB:
4V66
PDB:
4V69
PDB:
4V6C
PDB:
4V6D
PDB:
4V6E
PDB:
4V6K
PDB:
4V6L
PDB:
4V6M
PDB:
4V6N
PDB:
4V6O
PDB:
4V6P
PDB:
4V6Q
PDB:
4V6R
PDB:
4V6S
PDB:
4V6T
PDB:
4V6V
PDB:
4V6Y
PDB:
4V6Z
PDB:
4V70
PDB:
4V71
PDB:
4V72
PDB:
4V73
PDB:
4V74
PDB:
4V75
PDB:
4V76
PDB:
4V77
PDB:
4V78
PDB:
4V79
PDB:
4V7A
PDB:
4V7B
PDB:
4V7C
PDB:
4V7D
PDB:
4V7I
PDB:
4V7S
PDB:
4V7T
PDB:
4V7U
PDB:
4V7V
PDB:
4V9C
PDB:
4V9D
PDB:
4V9O
PDB:
4V9P
PDB:
4WF1
PDB:
4WOI
PDB:
4WWW
PDB:
4YBB
PDB:
5ADY
PDB:
5AFI
PDB:
5AKA
PDB:
5GAD
PDB:
5GAE
PDB:
5GAF
PDB:
5GAG
PDB:
5GAH
PDB:
5H5U
PDB:
5IQR
PDB:
5IT8
PDB:
5J5B
PDB:
5J7L
PDB:
5J88
PDB:
5J8A
PDB:
5J91
PDB:
5JC9
PDB:
5JTE
PDB:
5JU8
PDB:
5KCR
PDB:
5KCS
PDB:
5KPS
PDB:
5KPV
PDB:
5KPW
PDB:
5KPX
PDB:
5L3P
PDB:
5LZA
PDB:
5LZB
PDB:
5LZC
PDB:
5LZD
PDB:
5LZE
PDB:
5LZF
PDB:
5MDV
PDB:
5MDW
PDB:
5MDY
PDB:
5MDZ
PDB:
5MGP
PDB:
5NCO
PDB:
5NP6
PDB:
5NWY
PDB:
5O2R
PDB:
5U4I
PDB:
5U9F
PDB:
5U9G
PDB:
5UYK
PDB:
5UYL
PDB:
5UYM
PDB:
5UYN
PDB:
5UYP
PDB:
5UYQ
PDB:
5WDT
PDB:
5WE4
PDB:
5WE6
PDB:
5WFK
PDB:
6BU8
PDB:
6BY1
PDB:
6C4I
PDB:
6ENU
PDB:
6GBZ
PDB:
6GC0
PDB:
6GC4
PDB:
6GC8
PDB:
6GWT
PDB:
6GXM
PDB:
6GXN
PDB:
6GXO
PDB:
6GXP
PDB:
6H4N
PDB:
6H58
PDB:
6HRM
PDB:
6I0Y
PDB:
6I7V
PDB:
6O9J
PDB:
6OFX
PDB:
6OG7
PDB:
6ORE
PDB:
6ORL
PDB:
6OST
PDB:
6OT3
PDB:
6OUO
PDB:
6Q97
PDB:
6Q98
PDB:
6Q9A
PDB:
6QUL
PDB:
6S0K
PDB:
6SZS
PDB:
6TBV
PDB:
6TC3
PFAM:
PF03948
PFAM:
PF01281
PRIDE:
P0A7R1
PRODB:
PRO_000023815
PROSITE:
PS00651
REFSEQ:
NP_418624
SMR:
P0A7R1
UNIPROT:
P0A7R1


Operon      
Name: rpsF-priB-rpsR-rplI         
Operon arrangement:
Transcription unit        Promoter
rpsF-priB-rpsR-rplI


Transcriptional Regulation      
Display Regulation             
Activated by: CRP


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_5061 (cluster) 4425912 forward nd [RS-EPT-CBR] [26]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Abdurashidova GG., Tsvetkova EA., Chernyi AA., Kaminir LB., Budowsky EI., 1985, Intersubunit RNA-protein contacts in pre- and post-translocated E. coli ribosome., FEBS Lett 185(2):291-4

 [2] Al-Majdoub ZM., Owoseni A., Gaskell SJ., Barber J., 2013, Effects of gentamicin on the proteomes of aerobic and oxygen-limited Escherichia coli., J Med Chem 56(7):2904-10

 [3] Branlant C., Krol A., Sriwidada J., Brimacombe R., 1976, RNA sequences associated with proteins L1, L9, and L5, L18, L25, in ribonucleoprotein fragments isolated from the 50-S subunit of Escherichia coli ribosomes., Eur J Biochem 70(2):483-92

 [4] Branlant C., Widada JS., Krol A., Ebel JP., 1977, Studies on the primary structure of the ribosomal 23S RNA of Escherichia coli: II. A characterisation and an alignment of 24 sections spanning the entire molecule and its application to the localisation of specific fragments., Nucleic Acids Res 4(12):4323-45

 [5] Dunkle JA., Wang L., Feldman MB., Pulk A., Chen VB., Kapral GJ., Noeske J., Richardson JS., Blanchard SC., Cate JH., 2011, Structures of the bacterial ribosome in classical and hybrid states of tRNA binding., Science 332(6032):981-4

 [6] Gordiyenko Y., Deroo S., Zhou M., Videler H., Robinson CV., 2008, Acetylation of L12 increases interactions in the Escherichia coli ribosomal stalk complex., J Mol Biol 380(2):404-14

 [7] Hwang J., Inouye M., 2006, The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli., Mol Microbiol 61:1660-1672

 [8] Isono K., Kitakawa M., 1978, Cluster of ribosomal protein genes in Escherichia coli containing genes for proteins S6, S18, and L9., Proc Natl Acad Sci U S A 75(12):6163-7

 [9] Kakegawa T., Sato E., Hirose S., Igarashi K., 1986, Polyamine binding sites on Escherichia coli ribosomes., Arch Biochem Biophys 251(2):413-20

 [10] Kamp RM., Yao ZJ., Wittmann-Liebold B., 1983, Direct micro-sequence analysis of peptides from Escherichia coli ribosomal proteins S11, L9 and L29 after separation by reversed phase chromatography., Hoppe Seylers Z Physiol Chem 364(2):141-55

 [11] Kitakawa M., Blumenthal L., Isono K., 1980, Isolation and characterization of specialized transducing lambda phages carrying ribosomal protein genes of Escherichia coli., Mol Gen Genet 180(2):343-9

 [12] Kuroda A., Nomura K., Ohtomo R., Kato J., Ikeda T., Takiguchi N., Ohtake H., Kornberg A., 2001, Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli., Science 293(5530):705-8

 [13] Morrison CA., Tischendorf G., Stoffler G., Garrett RA., 1977, Accessibility of proteins in 50S ribosomal subunits of Escherichia coli to antibodies: an ultracentrifugation study., Mol Gen Genet 151(3):245-52

 [14] Moureau P., Di Giambattista M., Cocito C., 1983, The lasting ribosome alteration produced by virginiamycin M disappears upon removal of certain ribosomal proteins., Biochim Biophys Acta 739(2):164-72

 [15] Nag B., Akella SS., Cann PA., Tewari DS., Glitz DG., Traut RR., 1991, Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit., J Biol Chem 266(33):22129-35

 [16] Osswald M., Greuer B., Brimacombe R., 1990, Localization of a series of RNA-protein cross-link sites in the 23S and 5S ribosomal RNA from Escherichia coli, induced by treatment of 50S subunits with three different bifunctional reagents., Nucleic Acids Res 18(23):6755-60

 [17] Robertson WR., Dowsett SJ., Hardy SJ., 1977, Exchange of ribosomal proteins among the ribosomes of Escherichia coli., Mol Gen Genet 157(2):205-14

 [18] Sato S., Xiang S., Raleigh DP., 2001, On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9., J Mol Biol 312(3):569-77

 [19] Schnier J., Kitakawa M., Isono K., 1986, The nucleotide sequence of an Escherichia coli chromosomal region containing the genes for ribosomal proteins S6, S18, L9 and an open reading frame., Mol Gen Genet 204(1):126-32

 [20] Schuwirth BS., Borovinskaya MA., Hau CW., Zhang W., Vila-Sanjurjo A., Holton JM., Cate JH., 2005, Structures of the bacterial ribosome at 3.5 A resolution., Science 310(5749):827-34

 [21] Seidman JS., Janssen BD., Hayes CS., 2011, Alternative fates of paused ribosomes during translation termination., J Biol Chem 286(36):31105-12

 [22] Stoffler-Meilicke M., Noah M., Stoffler G., 1983, Location of eight ribosomal proteins on the surface of the 50S subunit from Escherichia coli., Proc Natl Acad Sci U S A 80(22):6780-4

 [23] Subramanian AR., van Duin J., 1977, Exchange of individual ribosomal proteins between ribosomes as studied by heavy isotope-transfer experiments., Mol Gen Genet 158(1):1-9

 [24] Traut RR., Lambert JM., Kenny JW., 1983, Ribosomal protein L7/L12 cross-links to proteins in separate regions of the 50 S ribosomal subunit of Escherichia coli., J Biol Chem 258(23):14592-8

 [25] Vladimirov SN., Graifer DM., Karpova GG., Semenkov YuP., Makhno VI., Kirillov SV., 1985, The effect of GTP hydrolysis and transpeptidation on the arrangement of aminoacyl-tRNA at the A-site of Escherichia coli 70 S ribosomes., FEBS Lett 181(2):367-72

 [26] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB