RegulonDB RegulonDB 11.0: Gene Form
   

maeA gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

maeA adhP sra maeAp3 maeAp3 maeAp4 maeAp4 adhPp5 adhPp5

Gene      
Name: maeA    Texpresso search in the literature
Synonym(s): ECK1473, EG10948, b1479, sfcA
Genome position(nucleotides): 1553972 <-- 1555669
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
52.0
External database links:  
ASAP:
ABE-0004931
CGSC:
32176
ECHOBASE:
EB0941
ECOLIHUB:
maeA
OU-MICROARRAY:
b1479
STRING:
511145.b1479
COLOMBOS: maeA


Product      
Name: malate dehydrogenase (oxaloacetate-decarboxylating)
Synonym(s): MaeA, NAD+-dependent malate dehydrogenase, NAD+-dependent malic enzyme, SfcA, malate dehydrogenase, NAD-requiring
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 63.197
Isoelectric point: 4.952
Motif(s):
 
Type Positions Sequence Comment
81 -> 261 QDTNETLFYRLVNNHLDEMMPVIYTPTVGAACERFSEIYRRSRGVFISYQNRHNMDDILQNVPNHNIKVIVVTDGERILGLGDQGIGGMGIPIGKLSLYTACGGISPAYTLPVVLDVGTNNQQLLNDPLYMGWRNPRITDDEYYEFVDEFIQAVKQRWPDVLLQFEDFAQKNAMPLLNRYR
271 -> 530 IQGTAAVTVGTLIAASRAAGGQLSEKKIVFLGAGSAGCGIAEMIISQTQREGLSEEAARQKVFMVDRFGLLTDKMPNLLPFQTKLVQKRENLSDWDTDSDVLSLLDVVRNVKPDILIGVSGQTGLFTEEIIREMHKHCPRPIVMPLSNPTSRVEATPQDIIAWTEGNALVATGSPFNPVVWKDKIYPIAQCNNAFIFPGIGLGVIASGASRITDEMLMSASETLAQYSPLVLNGEGMVLPELKDIQKVSRAIAFAVGKMA

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.7 - central intermediary metabolism
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0046872 - metal ion binding
GO:0016491 - oxidoreductase activity
GO:0004470 - malic enzyme activity
GO:0008948 - oxaloacetate decarboxylase activity
GO:0042802 - identical protein binding
GO:0051287 - NAD binding
GO:0004471 - malate dehydrogenase (decarboxylating) (NAD+) activity
biological_process GO:0006090 - pyruvate metabolic process
GO:0006094 - gluconeogenesis
GO:0006108 - malate metabolic process
Note(s): Note(s): ...[more].
Reference(s): [1] Baez-Viveros JL., et al., 2007
[2] Bianco C., et al., 2006
[3] Hoefel T., et al., 2012
[4] Hou S., et al., 2011
[5] Kim S., et al., 2011
[6] Kwon YD., et al., 2007
[7] Lou F., et al., 2016
[8] Mienda BS., et al., 2016
[9] Shen T., et al., 2013
[10] Sigala JC., et al., 2009
[11] Soellner S., et al., 2013
[12] Weiner M., et al., 2014
[13] Wu H., et al., 2007
[14] Yang J., et al., 2014
External database links:  
ALPHAFOLD:
P26616
ECOCYC:
MALIC-NAD-MONOMER
ECOLIWIKI:
b1479
INTERPRO:
IPR037062
INTERPRO:
IPR012301
INTERPRO:
IPR001891
INTERPRO:
IPR015884
INTERPRO:
IPR023667
INTERPRO:
IPR036291
INTERPRO:
IPR012302
MODBASE:
P26616
PDB:
6AGS
PFAM:
PF03949
PFAM:
PF00390
PRIDE:
P26616
PRINTS:
PR00072
PROSITE:
PS00331
REFSEQ:
NP_415996
SMART:
SM01274
SMART:
SM00919
SMR:
P26616
SWISSMODEL:
P26616
UNIPROT:
P26616


Operon      
Name: maeA         
Operon arrangement:
Transcription unit        Promoter
maeA


Regulation by small RNA    
  Display Regulation
small RNA spf


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter adhPp5 1553994 reverse nd [ICWHO] [15]
  promoter maeAp4 1555727 reverse nd [ICWHO] [15]
  promoter maeAp3 1555742 reverse nd [ICWHO] [15]


Evidence    

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Baez-Viveros JL., Flores N., Juarez K., Castillo-Espana P., Bolivar F., Gosset G., 2007, Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine., Microb Cell Fact 6:30

 [2] Bianco C., Imperlini E., Calogero R., Senatore B., Pucci P., Defez R., 2006, Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli., Microbiology 152(Pt 8):2421-31

 [3] Hoefel T., Faust G., Reinecke L., Rudinger N., Weuster-Botz D., 2012, Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed-batch-operated stirred tank bioreactors., Biotechnol J 7(10):1277-87

 [4] Hou S., Liu W., Ji D., Zhao ZK., 2011, Efficient synthesis of triazole moiety-containing nucleotide analogs and their inhibitory effects on a malic enzyme., Bioorg Med Chem Lett 21(6):1667-9

 [5] Kim S., Lee CH., Nam SW., Kim P., 2011, Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase., Lett Appl Microbiol 52(5):433-40

 [6] Kwon YD., Kwon OH., Lee HS., Kim P., 2007, The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes., J Appl Microbiol 103(6):2340-5

 [7] Lou F., Li N., Zhao Y., Guo S., Wang Z., Chen T., 2016, [Effects of overexpression of carboxylation pathway genes and inactivation of malic enzymes on malic acid production in Escherichia coli]., Sheng Wu Gong Cheng Xue Bao 32(11):1539-1548

 [8] Mienda BS., Shamsir MS., Illias RM., 2016, Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates., Comput Biol Chem 61:130-7

 [9] Shen T., Rui B., Zhou H., Zhang X., Yi Y., Wen H., Zheng H., Wu J., Shi Y., 2013, Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress., Mol Biosyst 9(1):121-32

 [10] Sigala JC., Flores S., Flores N., Aguilar C., de Anda R., Gosset G., Bolivar F., 2009, Acetate metabolism in Escherichia coli strains lacking phosphoenolpyruvate: carbohydrate phosphotransferase system; evidence of carbon recycling strategies and futile cycles., J Mol Microbiol Biotechnol 16(3-4):224-35

 [11] Soellner S., Rahnert M., Siemann-Herzberg M., Takors R., Altenbuchner J., 2013, Evolution of pyruvate kinase-deficient Escherichia coli mutants enables glycerol-based cell growth and succinate production., J Appl Microbiol 115(6):1368-78

 [12] Weiner M., Trondle J., Albermann C., Sprenger GA., Weuster-Botz D., 2014, Improvement of constraint-based flux estimation during L-phenylalanine production with Escherichia coli using targeted knock-out mutants., Biotechnol Bioeng 111(7):1406-16

 [13] Wu H., Li ZM., Zhou L., Ye Q., 2007, Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture., Appl Environ Microbiol 73(24):7837-43

 [14] Yang J., Wang Z., Zhu N., Wang B., Chen T., Zhao X., 2014, Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions., Microbiol Res 169(5-6):432-40

 [15] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78


RegulonDB