RegulonDB RegulonDB 10.9: Gene Form
   

dsbC gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

recJ xerD dsbC CpxR CpxR dsbCp2 dsbCp2 TSS_3166 TSS_3166 dsbCp dsbCp

Gene      
Name: dsbC    Texpresso search in the literature
Synonym(s): ECK2888, EG11070, b2893, xprA
Genome position(nucleotides): 3038112 <-- 3038822 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
48.38
External database links:  
ASAP:
ABE-0009494
CGSC:
33355
ECHOBASE:
EB1063
ECOLIHUB:
dsbC
OU-MICROARRAY:
b2893
STRING:
511145.b2893
COLOMBOS: dsbC


Product      
Name: protein disulfide isomerase DsbC
Synonym(s): DsbC, XprA, disulfide oxidoreductase 2, protein disulfide oxidoreductase DsbC, thiol:disulfide oxidoreductase DsbC
Sequence: Get amino acid sequence Fasta Format
Cellular location: periplasmic space
Molecular weight: 25.622
Isoelectric point: 6.781
Motif(s):
 
Type Positions Sequence
26 -> 75 QQTLAKMGIKSSDIQPAPVAGMKTVLTNSGVLYITDDGKHIIQGPMYDVS
36 -> 231 SSDIQPAPVAGMKTVLTNSGVLYITDDGKHIIQGPMYDVSGTAPVNVTNKMLLKQLNALEKEMIVYKAPQEKHVITVFTDITCGYCHKLHEQMADYNALGITVRYLAFPRQGLDSDAEKEMKAIWCAKDKNKAFDDVMAGKSVAPASCDVDIADHYALGVQLGVSGTPAVVLSNGTLVPGYQPPKEMKEFLDEHQK
1 -> 20 MKKGFMLFTLLAAFSGFAQA
183 -> 183 C
219 -> 219 P

 

Classification:
Multifun Terms (GenProtEC)  
  2 - information transfer --> 2.3 - protein related --> 2.3.4 - chaperoning, repair (refolding)
Gene Ontology Terms (GO)  
cellular_component GO:0030288 - outer membrane-bounded periplasmic space
GO:0042597 - periplasmic space
molecular_function GO:0003756 - protein disulfide isomerase activity
GO:0015035 - protein disulfide oxidoreductase activity
GO:0042803 - protein homodimerization activity
biological_process GO:0046688 - response to copper ion
GO:0055114 - oxidation-reduction process
GO:0061077 - chaperone-mediated protein folding
Evidence: [IDA] Inferred from direct assay
Reference(s): [1] Arredondo S., et al., 2008
[2] Arredondo SA., et al., 2009
[3] Banaszak K., et al., 2004
[4] Bessette PH., et al., 2001
[5] Chen J., et al., 1999
[6] Darby NJ., et al., 1998
[7] Elton TC., et al., 2005
[8] Frishman D. 1996
[9] Hiniker A., et al., 2005
[10] Ito K. 2010
[11] Joly JC., et al., 1997
[12] Kohda J., et al., 2002
[13] Liu X., et al., 2001
[14] Maskos K., et al., 2003
[15] Metheringham R., et al., 1996
[16] Pan JL., et al., 2008
[17] Segatori L., et al., 2006
[18] Segatori L., et al., 2004
[19] Shevchik VE., et al., 1994
[20] Shouldice SR., et al., 2010
[21] Sone M., et al., 1997
[22] Stafford SJ., et al., 1999
[23] Stepanenko OV., et al., 2004
[24] Sun XX., et al., 2000
[25] Yeh SM., et al., 2007
[26] Zhan X., et al., 2004
External database links:  
BIGG:
dsbcrd
DIP:
DIP-35818N
ECOCYC:
DSBC-MONOMER
ECOLIWIKI:
b2893
INTERPRO:
IPR012336
INTERPRO:
IPR009094
INTERPRO:
IPR017937
INTERPRO:
IPR018950
INTERPRO:
IPR033954
INTERPRO:
IPR036249
INTERPRO:
IPR013766
MODBASE:
P0AEG6
PDB:
2IYJ
PDB:
1TJD
PDB:
1JZO
PDB:
1JZD
PDB:
1G0T
PDB:
1EEJ
PFAM:
PF10411
PFAM:
PF13098
PRIDE:
P0AEG6
PRODB:
PRO_000022481
PROSITE:
PS51352
PROSITE:
PS00194
REFSEQ:
NP_417369
SMR:
P0AEG6
SWISSMODEL:
P0AEG6
UNIPROT:
P0AEG6


Operon      
Name: xerD-dsbC-recJ-prfB-lysS         
Operon arrangement:
Transcription unit        Promoter
dsbC
dsbC-recJ-prfB
xerD-dsbC-recJ
xerD-dsbC-recJ
prfB-lysS
xerD


Transcriptional Regulation      
Display Regulation             
Activated by: CpxR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_3166 3038872 reverse nd [RS-EPT-CBR] [27]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Arredondo S., Segatori L., Gilbert HF., Georgiou G., 2008, De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC., J Biol Chem 283(46):31469-76

 [2] Arredondo SA., Chen TF., Riggs AF., Gilbert HF., Georgiou G., 2009, Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC., J Biol Chem 284(36):23972-9

 [3] Banaszak K., Mechin I., Frost G., Rypniewski W., 2004, Structure of the reduced disulfide-bond isomerase DsbC from Escherichia coli., Acta Crystallogr D Biol Crystallogr 60(Pt 10):1747-52

 [4] Bessette PH., Qiu J., Bardwell JC., Swartz JR., Georgiou G., 2001, Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli., J Bacteriol 183(3):980-8

 [5] Chen J., Song JL., Zhang S., Wang Y., Cui DF., Wang CC., 1999, Chaperone activity of DsbC., J Biol Chem 274(28):19601-5

 [6] Darby NJ., Raina S., Creighton TE., 1998, Contributions of substrate binding to the catalytic activity of DsbC., Biochemistry 37(3):783-91

 [7] Elton TC., Holland SJ., Frost LS., Hazes B., 2005, F-like type IV secretion systems encode proteins with thioredoxin folds that are putative DsbC homologues., J Bacteriol 187(24):8267-77

 [8] Frishman D., 1996, DSBC protein: a new member of the thioredoxin fold-containing family., Biochem Biophys Res Commun 219(3):686-9

 [9] Hiniker A., Collet JF., Bardwell JC., 2005, Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC., J Biol Chem 280(40):33785-91

 [10] Ito K., 2010, Editing disulphide bonds: error correction using redox currencies., Mol Microbiol 75(1):1-5

 [11] Joly JC., Swartz JR., 1997, In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC., Biochemistry 36(33):10067-72

 [12] Kohda J., Kawahara N., Fukuda H., Kondo A., 2002, Effect of oxidized and reduced forms of Escherichia coli DsbC on protein refolding., J Biosci Bioeng 94(2):130-4

 [13] Liu X., Wang CC., 2001, Disulfide-dependent folding and export of Escherichia coli DsbC., J Biol Chem 276(2):1146-51

 [14] Maskos K., Huber-Wunderlich M., Glockshuber R., 2003, DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo., J Mol Biol 325(3):495-513

 [15] Metheringham R., Tyson KL., Crooke H., Missiakas D., Raina S., Cole JA., 1996, Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12., Mol Gen Genet 253(1-2):95-102

 [16] Pan JL., Sliskovic I., Bardwell JC., 2008, Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway., J Mol Biol 377(5):1433-42

 [17] Segatori L., Murphy L., Arredondo S., Kadokura H., Gilbert H., Beckwith J., Georgiou G., 2006, Conserved role of the linker alpha-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB., J Biol Chem 281(8):4911-9

 [18] Segatori L., Paukstelis PJ., Gilbert HF., Georgiou G., 2004, Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways., Proc Natl Acad Sci U S A 101(27):10018-23

 [19] Shevchik VE., Condemine G., Robert-Baudouy J., 1994, Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity., EMBO J 13(8):2007-12

 [20] Shouldice SR., Cho SH., Boyd D., Heras B., Eser M., Beckwith J., Riggs P., Martin JL., Berkmen M., 2010, In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling., Mol Microbiol 75(1):13-28

 [21] Sone M., Akiyama Y., Ito K., 1997, Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds., J Biol Chem 272(16):10349-52

 [22] Stafford SJ., Humphreys DP., Lund PA., 1999, Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+., FEMS Microbiol Lett 174(1):179-84

 [23] Stepanenko OV., Kuznetsova IM., Turoverov KK., Huang C., Wang CC., 2004, Conformational change of the dimeric DsbC molecule induced by GdnHCl. A study by intrinsic fluorescence., Biochemistry 43(18):5296-303

 [24] Sun XX., Wang CC., 2000, The N-terminal sequence (residues 1-65) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC., J Biol Chem 275(30):22743-9

 [25] Yeh SM., Koon N., Squire C., Metcalf P., 2007, Structures of the dimerization domains of the Escherichia coli disulfide-bond isomerase enzymes DsbC and DsbG., Acta Crystallogr D Biol Crystallogr 63(Pt 4):465-71

 [26] Zhan X., Gao J., Jain C., Cieslewicz MJ., Swartz JR., Georgiou G., 2004, Genetic analysis of disulfide isomerization in Escherichia coli: expression of DsbC is modulated by RNase E-dependent mRNA processing., J Bacteriol 186(3):654-60

 [27] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB