RegulonDB RegulonDB 11.0: Gene Form
   

gsk gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

ybaL gsk aes hemH aesp aesp gskp gskp TSS_643 TSS_643 TSS_642 TSS_642

Gene      
Name: gsk    Texpresso search in the literature
Synonym(s): ECK0471, EG11102, b0477
Genome position(nucleotides): 500125 --> 501429
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
51.88
Reference(s): [1] Harlow KW., et al., 1995
[2] Mori H., et al., 1995
External database links:  
ASAP:
ABE-0001655
CGSC:
658
ECHOBASE:
EB1094
ECOLIHUB:
gsk
NCBI-GENE:
946584
OU-MICROARRAY:
b0477
STRING:
511145.b0477
COLOMBOS: gsk


Product      
Name: inosine/guanosine kinase
Synonym(s): Gsk
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 48.449
Isoelectric point: 5.588
Motif(s):
 
Type Positions Sequence Comment
7 -> 7 R UniProt: Mutant is less sensitive to ppGpp inhibition..
40 -> 45 DQTLVD UniProt: GMP.
88 -> 293 HQFAGGTIGNTMHNYSVLADDRSVLLGVMCSNIEIGSYAYRYLCNTSSRTDLNYLQGVDGPIGRCFTLIGESGERTFAISPGHMNQLRAESIPEDVIAGASALVLTSYLVRCKPGEPMPEATMKAIEYAKKYNVPVVLTLGTKFVIAENPQWWQQFLKDHVSILAMNEDEAEALTGESDPLLASDKALDWVDLVLCTAGPIGLYMA
93 -> 97 GTIGN UniProt: GMP.
284 -> 289 TAGPIG UniProt: ATP.

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.7 - central intermediary metabolism --> 1.7.33 - nucleotide and nucleoside conversions
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0106366 - guanosine kinase activity
GO:0005515 - protein binding
GO:0016740 - transferase activity
GO:0016301 - kinase activity
GO:0016773 - phosphotransferase activity, alcohol group as acceptor
GO:0000166 - nucleotide binding
GO:0005524 - ATP binding
GO:0008906 - inosine kinase activity
GO:0042803 - protein homodimerization activity
GO:0097216 - guanosine tetraphosphate binding
biological_process GO:0016310 - phosphorylation
GO:0006166 - purine ribonucleoside salvage
GO:0032263 - GMP salvage
GO:0032264 - IMP salvage
Note(s): Note(s): ...[more].
Reference(s): [3] Bork P., et al., 1993
[1] Harlow KW., et al., 1995
[4] Hove-Jensen B. 1983
[5] Lee WH., et al., 2012
[6] Livshits VA., et al., 1973
[7] Matsui H., et al., 2001
[8] Mori H., et al., 1997
[9] Petchiappan A., et al., 2020
[10] Pimkin M., et al., 2009
[11] Wang B., et al., 2020
External database links:  
ALPHAFOLD:
P0AEW6
DIP:
DIP-48148N
ECOCYC:
GSK-MONOMER
ECOLIWIKI:
b0477
INTERPRO:
IPR011611
INTERPRO:
IPR029056
INTERPRO:
IPR002173
MODBASE:
P0AEW6
PDB:
6VWP
PDB:
6VWO
PFAM:
PF00294
PRIDE:
P0AEW6
PRODB:
PRO_000022848
PROSITE:
PS00584
REFSEQ:
NP_415010
SMR:
P0AEW6
UNIPROT:
P0AEW6


Operon      
Name: gsk         
Operon arrangement:
Transcription unit        Promoter
gsk


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_642 499566 forward nd [RS-EPT-CBR] [12]
  promoter TSS_643 499570 forward nd [RS-EPT-CBR] [12]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Harlow KW., Nygaard P., Hove-Jensen B., 1995, Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli., J Bacteriol 177(8):2236-40

 [2] Mori H., Iida A., Teshiba S., Fujio T., 1995, Cloning of a guanosine-inosine kinase gene of Escherichia coli and characterization of the purified gene product., J Bacteriol 177(17):4921-6

 [3] Bork P., Sander C., Valencia A., 1993, Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases., Protein Sci 2(1):31-40

 [4] Hove-Jensen B., 1983, Chromosomal location of the gene encoding phosphoribosylpyrophosphate synthetase in Escherichia coli., J Bacteriol 154(1):177-84

 [5] Lee WH., Shin SY., Kim MD., Han NS., Seo JH., 2012, Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli., Appl Microbiol Biotechnol 93(6):2327-34

 [6] Livshits VA., Sukhodolets VV., 1973, [Role of adenine nucleotides in regulating utilization of purine ribonucleosides by Escherichia coli K-12 mutants defective in purine nucleoside phosphorylase]., Genetika 9(12):102-11

 [7] Matsui H., Shimaoka M., Takenaka Y., Kawasaki H., Kurahashi O., 2001, gsk disruption leads to guanosine accumulation in Escherichia coli., Biosci Biotechnol Biochem 65(5):1230-5

 [8] Mori H., Iida A., Fujio T., Teshiba S., 1997, A novel process of inosine 5'-monophosphate production using overexpressed guanosine/inosine kinase., Appl Microbiol Biotechnol 48(6):693-8

 [9] Petchiappan A., Gottesman S., 2020, How Does the Alarmone ppGpp Change Bacterial Cell Metabolism? From Genome-wide Approaches to Structure to Physiology., Mol Cell 80(1):1-2

 [10] Pimkin M., Pimkina J., Markham GD., 2009, A regulatory role of the Bateman domain of IMP dehydrogenase in adenylate nucleotide biosynthesis., J Biol Chem 284(12):7960-9

 [11] Wang B., Grant RA., Laub MT., 2020, ppGpp Coordinates Nucleotide and Amino-Acid Synthesis in E. coli During Starvation., Mol Cell 80(1):29-42.e10

 [12] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB