RegulonDB RegulonDB 10.9: Gene Form
   

zwf gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

edd zwf yebK Rob MarA SoxS Cra GntR KdgR Cra GntR KdgR PhoB anti-anti-terminator anti-terminator terminator pykAp2 pykAp2 TSS_2199 TSS_2199 yebKp2 yebKp2 zwfp zwfp TSS_2197 TSS_2197 TSS_2196 TSS_2196 eddp1 eddp1 edap1 edap1 edap2 edap2

Gene      
Name: zwf    Texpresso search in the literature
Synonym(s): ECK1853, EG11221, b1852
Genome position(nucleotides): 1934839 <-- 1936314 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
51.69
External database links:  
ASAP:
ABE-0006171
CGSC:
2
ECHOBASE:
EB1203
ECOLIHUB:
zwf
MIM:
300908
OU-MICROARRAY:
b1852
STRING:
511145.b1852
COLOMBOS: zwf


Product      
Name: NADP+-dependent glucose-6-phosphate dehydrogenase
Synonym(s): G6PDH, Zwf
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 55.704
Isoelectric point: 5.436
Motif(s):
 
Type Positions Sequence
13 -> 186 VIFGAKGDLARRKLLPSLYQLEKAGQLNPDTRIIGVGRADWDKAAYTKVVREALETFMKETIDEGLWDTLSARLDFCNLDVNDTAAFSRLGAMLDQKNRITINYFAMPPSTFGAICKGLGEAKLNAKPARVVMEKPLGTSLATSQEINDQVGEYFEECQVYRIDHYLGKETVLN
188 -> 488 LALRFANSLFVNNWDNRTIDHVEITVAEEVGIEGRWGYFDKAGQMRDMIQNHLLQILCMIAMSPPSDLSADSIRDEKVKVLKSLRRIDRSNVREKTVRGQYTAGFAQGKKVPGYLEEEGANKSSNTETFVAIRVDIDNWRWAGVPFYLRTGKRLPTKCSEVVVYFKTPELNLFKESWQDLPQNKLTIRLQPDEGVDIQVLNKVPGLDHKHNLQITKLDLSYSETFNQTHLADAYERLLLETMRGIQALFVRRDEVEEAWKWVDSITEAWAMDNDAPKPYQAGTWGPVASVAMITRDGRSWN
92 -> 93 DV
199 -> 203 NNWDN
100 -> 100 S

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.1 - carbon utilization --> 1.1.1 - carbon compounds
  1 - metabolism --> 1.3 - energy metabolism, carbon --> 1.3.2 - pentose pwy, oxidative branch
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0005515 - protein binding
GO:0016491 - oxidoreductase activity
GO:0016614 - oxidoreductase activity, acting on CH-OH group of donors
GO:0004345 - glucose-6-phosphate dehydrogenase activity
GO:0042802 - identical protein binding
GO:0050661 - NADP binding
biological_process GO:0005975 - carbohydrate metabolic process
GO:0006006 - glucose metabolic process
GO:0009372 - quorum sensing
GO:0006098 - pentose-phosphate shunt
GO:0055114 - oxidation-reduction process
Note(s): Note(s): ...[more].
Reference(s): [1] Brumaghim JL., et al., 2003
[2] Chambost JP., et al., 1972
[3] Conway T., et al., 1991
[4] Dukan S., et al., 1999
[5] Dykhuizen DE., et al., 1984
[6] Dykhuizen DE., et al., 1984
[7] Echtenkamp PL., et al., 2009
[8] Edwards JS., et al., 2000
[9] Flores S., et al., 2004
[10] Fong SS., et al., 2004
[11] Fraenkel DG., et al., 1972
[12] Fraenkel DG., et al., 1971
[13] Fraenkel DG., et al., 1972
[14] Gao Y., et al., 2010
[15] Gershanovich VN., et al., 1969
[16] Giro M., et al., 2006
[17] Greenberg JT., et al., 1989
[18] Guttman DS., et al., 1994
[19] Hartl DL. 1989
[20] Haverkorn van Rijsewijk BR., et al., 2011
[21] Heux S., et al., 2014
[22] Iarulin VR., et al., 1985
[23] Idil O., et al., 2016
[24] Jain PK., et al., 2013
[25] Kabir MM., et al., 2003
[26] Kivero AD., et al., null
[27] Krolichenko TP. null
[28] Lee AT., et al., 1987
[29] Lee WH., et al., 2011
[30] Lim SJ., et al., 2002
[31] Liochev SI., et al., 1992
[32] Lu C., et al., 2003
[33] Maciag M., et al., 2012
[34] Murarka A., et al., 2010
[35] Murarka A., et al., 2010
[36] Park JM., et al., 2010
[37] Peng L., et al., 2004
[38] Persson B., et al., 1991
[39] Peyru G., et al., 1968
[40] Piazza I., et al., 2018
[41] Rakita RM., et al., 1990
[42] Rowley DL., et al., 1991
[43] Sandoval JM., et al., 2015
[44] Schindler J., et al., 1969
[45] Scott DB., et al., 1959
[46] Siddiquee KA., et al., 2004
[47] Thomson J., et al., 1979
[48] Trinh CT., et al., 2006
[49] Vinopal RT., et al., 1975
[50] Wood TI., et al., 1999
[51] Yamamoto I., et al., 1975
External database links:  
DIP:
DIP-35780N
ECOCYC:
GLU6PDEHYDROG-MONOMER
ECOLIWIKI:
b1852
INTERPRO:
IPR022675
INTERPRO:
IPR036291
INTERPRO:
IPR001282
INTERPRO:
IPR019796
INTERPRO:
IPR022674
MINT:
P0AC53
MODBASE:
P0AC53
PANTHER:
PTHR23429
PFAM:
PF00479
PFAM:
PF02781
PRIDE:
P0AC53
PRINTS:
PR00079
PROSITE:
PS00069
REFSEQ:
NP_416366
SMR:
P0AC53
UNIPROT:
P0AC53


Operon      
Name: zwf         
Operon arrangement:
Transcription unit        Promoter
zwf


Transcriptional Regulation      
Display Regulation             
Activated by: MarA, SoxS, Rob
Repressed by: FNR, Fur, Cra
Growth Conditions:

[1] 

C: Escherichia coli| LB medium| glucose 2 mg/mL| 37.0 C| OD600 of 0.3
E: Escherichia coli| LB medium| glucose 2 mg/mL; paraquat 0.5 mM| 37.0 C| OD600 of 0.3

[2] 

C: Escherichia coli| LB medium| 37.0 C| OD600 of 0.3
E: Escherichia coli| LB medium| paraquat 0.5 mM| 37.0 C| OD600 of 0.3



Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_2196 1935229 reverse nd [RS-EPT-CBR] [52]
  promoter TSS_2197 1935719 reverse nd [RS-EPT-CBR] [52]
  promoter yebKp2 1936590 forward Similarity to the consensus
Read more >
[ICWHO], [RS-EPT-CBR] [52], [53]
  promoter TSS_2199 1936593 forward nd [RS-EPT-CBR] [52]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Brumaghim JL., Li Y., Henle E., Linn S., 2003, Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III)., J Biol Chem 278(43):42495-504

 [2] Chambost JP., Favard A., Cattaneo J., 1972, [De novo synthesis of glycogen by an Escherichia coli mutant lacking glucose-phosphate isomerase and D-glucose-6-phosphate dehydrogenase]., Carbohydr Res 24(2):379-91

 [3] Conway T., Yi KC., Egan SE., Wolf RE., Rowley DL., 1991, Locations of the zwf, edd, and eda genes on the Escherichia coli physical map., J Bacteriol 173(17):5247-8

 [4] Dukan S., Belkin S., Touati D., 1999, Reactive oxygen species are partially involved in the bacteriocidal action of hypochlorous acid., Arch Biochem Biophys 367(2):311-6

 [5] Dykhuizen DE., de Framond J., Hartl DL., 1984, Potential for hitchhiking in the eda-edd-zwf gene cluster of Escherichia coli., Genet Res 43(3):229-39

 [6] Dykhuizen DE., de Framond J., Hartl DL., 1984, Selective neutrality of glucose-6-phosphate dehydrogenase allozymes in Escherichia coli., Mol Biol Evol 1(2):162-70

 [7] Echtenkamp PL., Wilson DB., Shuler ML., 2009, Cell cycle progression in Escherichia coli B/r affects transcription of certain genes: Implications for synthetic genome design., Biotechnol Bioeng 102(3):902-9

 [8] Edwards JS., Palsson BO., 2000, Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions., BMC Bioinformatics 1:1

 [9] Flores S., de Anda-Herrera R., Gosset G., Bolivar FG., 2004, Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway., Biotechnol Bioeng 87(4):485-94

 [10] Fong SS., Palsson BO., 2004, Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes., Nat Genet 36(10):1056-8

 [11] Fraenkel DG., Banerjee S., 1972, Deletion mapping of zwf, the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase in Escherichia coli., Genetics 71(4):481-9

 [12] Fraenkel DG., Banerjee S., 1971, A mutation increasing the amount of a constitutive enzyme in Escherichia coli, glucose 6-phosphate dehydrogenase., J Mol Biol 56(1):183-94

 [13] Fraenkel DG., Parola A., 1972, "Up-promoter" mutations of glucose 6-phosphate dehydrogenase in Escherichia coli., J Mol Biol 71(1):107-11

 [14] Gao Y., Chen K., Zhang B., Li X., Chen L., Li Y., Jia X., Lei Y., Yan Z., Kong L., Wang N., Liu W., Qi Y., 2010, Antioxidant and free radical-scavenging activity of the extracellular death factor in Escherichia coli., Peptides 31(10):1821-5

 [15] Gershanovich VN., Mandzhgaladze DN., 1969, [Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase]., Dokl Akad Nauk SSSR 188(1):212-4

 [16] Giro M., Carrillo N., Krapp AR., 2006, Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli., Microbiology 152(Pt 4):1119-28

 [17] Greenberg JT., Demple B., 1989, A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress., J Bacteriol 171(7):3933-9

 [18] Guttman DS., Dykhuizen DE., 1994, Clonal divergence in Escherichia coli as a result of recombination, not mutation., Science 266(5189):1380-3

 [19] Hartl DL., 1989, The physiology of weak selection., Genome 31(1):183-9

 [20] Haverkorn van Rijsewijk BR., Nanchen A., Nallet S., Kleijn RJ., Sauer U., 2011, Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli., Mol Syst Biol 7:477

 [21] Heux S., Poinot J., Massou S., Sokol S., Portais JC., 2014, A novel platform for automated high-throughput fluxome profiling of metabolic variants., Metab Eng 25:8-19

 [22] Iarulin VR., Gorlenko ZhM., 1985, [Effect of mutation changes in RNA-polymerase and transcription termination factor rho on expression of various operons in E. coli]., Mol Gen Mikrobiol Virusol (10):8-19

 [23] Idil O., Macit I., Kaygusuz O., Darcan C., 2016, The role of oxidative stress genes and effect of pH on methylene blue sensitized photooxidation of Escherichia coli., Acta Biol Hung 67(1):85-98

 [24] Jain PK., Jain V., Singh AK., Chauhan A., Sinha S., 2013, Evaluation on the responses of succinate dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase and glucose-6-phosphate dehydrogenase to acid shock generated acid tolerance in Escherichia coli., Adv Biomed Res 2:75

 [25] Kabir MM., Shimizu K., 2003, Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR., J Biotechnol 105(1-2):11-31

 [26] Kivero AD., Bocharov EV., Doroshenko VG., Sobol' AG., Dubinnyi MA., Arsen'ev AS., null, [2D [1H,13C] NMR study of carbon fluxes during glucose utilization by Escherichia coli MG1655]., Prikl Biokhim Mikrobiol 44(2):168-75

 [27] Krolichenko TP., null, [Activity of glucose-6-phosphate dehydrogenase and level of nucleic acids in Escherichia coli during various rates of growth]., Mikrobiologiia 60(5):942-3

 [28] Lee AT., Cerami A., 1987, Elevated glucose 6-phosphate levels are associated with plasmid mutations in vivo., Proc Natl Acad Sci U S A 84(23):8311-4

 [29] Lee WH., Chin YW., Han NS., Kim MD., Seo JH., 2011, Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli., Appl Microbiol Biotechnol 91(4):967-76

 [30] Lim SJ., Jung YM., Shin HD., Lee YH., 2002, Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon., J Biosci Bioeng 93(6):543-9

 [31] Liochev SI., Fridovich I., 1992, Effects of overproduction of superoxide dismutases in Escherichia coli on inhibition of growth and on induction of glucose-6-phosphate dehydrogenase by paraquat., Arch Biochem Biophys 294(1):138-43

 [32] Lu C., Bentley WE., Rao G., 2003, Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations., Biotechnol Bioeng 83(7):864-70

 [33] Maciag M., Nowicki D., Szalewska-Palasz A., Wegrzyn G., 2012, Central carbon metabolism influences fidelity of DNA replication in Escherichia coli., Mutat Res 731(1-2):99-106

 [34] Murarka A., Clomburg JM., Gonzalez R., 2010, Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate., Microbiology 156(Pt 6):1860-72

 [35] Murarka A., Clomburg JM., Moran S., Shanks JV., Gonzalez R., 2010, Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose., J Biol Chem 285(41):31548-58

 [36] Park JM., Kim TY., Lee SY., 2010, Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses., Proc Natl Acad Sci U S A 107(33):14931-6

 [37] Peng L., Shimizu K., 2004, Effect of ppc gene knockout on the metabolism of Escherichia coli in view of gene expressions, enzyme activities and intracellular metabolite concentrations., Appl Microbiol Biotechnol

 [38] Persson B., Jeffery J., Jornvall H., 1991, Different segment similarities in long-chain dehydrogenases., Biochem Biophys Res Commun 177(1):218-23

 [39] Peyru G., Fraenkel DG., 1968, Genetic mapping of loci for glucose-6-phosphate dehydrogenase, gluconate-6-phosphate dehydrogenase, and gluconate-6-phosphate dehydrase in Escherichia coli., J Bacteriol 95(4):1272-8

 [40] Piazza I., Kochanowski K., Cappelletti V., Fuhrer T., Noor E., Sauer U., Picotti P., 2018, A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication., Cell 172(1-2):358-372.e23

 [41] Rakita RM., Michel BR., Rosen H., 1990, Differential inactivation of Escherichia coli membrane dehydrogenases by a myeloperoxidase-mediated antimicrobial system., Biochemistry 29(4):1075-80

 [42] Rowley DL., Wolf RE., 1991, Molecular characterization of the Escherichia coli K-12 zwf gene encoding glucose 6-phosphate dehydrogenase., J Bacteriol 173(3):968-77

 [43] Sandoval JM., Arenas FA., Garcia JA., Diaz-Vasquez WA., Valdivia-Gonzalez M., Sabotier M., Vasquez CC., 2015, Escherichia coli 6-phosphogluconate dehydrogenase aids in tellurite resistance by reducing the toxicant in a NADPH-dependent manner., Microbiol Res 177:22-7

 [44] Schindler J., Schlegel HG., 1969, [Regulation of the glucose-6-phosphate dehydrogenase of different bacterial species by ATP]., Arch Mikrobiol 66(1):69-78

 [45] Scott DB., Chu E., 1959, The oxidative pathway of carbohydrate metabolism in Escherichia coli. 6. Adaptation of glucose 6-phosphate dehydrogenase to growth in complex media., Biochem J 72:426-9

 [46] Siddiquee KA., Arauzo-Bravo MJ., Shimizu K., 2004, Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli., FEMS Microbiol Lett 235(1):25-33

 [47] Thomson J., Gerstenberger PD., Goldberg DE., Gociar E., Orozco de Silva A., Fraenkel DG., 1979, ColE1 hybrid plasmids for Escherichia coli genes of glycolysis and the hexose monophosphate shunt., J Bacteriol 137(1):502-6

 [48] Trinh CT., Carlson R., Wlaschin A., Srienc F., 2006, Design, construction and performance of the most efficient biomass producing E. coli bacterium., Metab Eng 8(6):628-38

 [49] Vinopal RT., Hillman JD., Schulman H., Reznikoff WS., Fraenkel DG., 1975, New phosphoglucose isomerase mutants of Escherichia coli., J Bacteriol 122(3):1172-4

 [50] Wood TI., Griffith KL., Fawcett WP., Jair KW., Schneider TD., Wolf RE., 1999, Interdependence of the position and orientation of SoxS binding sites in the transcriptional activation of the class I subset of Escherichia coli superoxide-inducible promoters., Mol Microbiol 34(3):414-30

 [51] Yamamoto I., Ishimoto M., 1975, Effect of nitrate reduction on the enzyme levels in carbon metabolism in Escherichia coli., J Biochem 78(2):307-15

 [52] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.

 [53] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78


RegulonDB