RegulonDB RegulonDB 11.1: Gene Form
   

ydiB gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

ydiN ydiB aroD aroDp aroDp

Gene      
Name: ydiB    Texpresso search in the literature
Synonym(s): ECK1690, EG11234, b1692
Genome position(nucleotides): 1773789 --> 1774655
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
47.75
External database links:  
ASAP:
ABE-0005651
ECHOBASE:
EB1216
ECOLIHUB:
ydiB
OU-MICROARRAY:
b1692
STRING:
511145.b1692
COLOMBOS: ydiB


Product      
Name: quinate/shikimate dehydrogenase
Synonym(s): YdiB
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 31.228
Isoelectric point: 4.787
Motif(s):
 
Type Positions Sequence Comment
2 -> 288 DVTAKYELIGLMAYPIRHSLSPEMQNKALEKAGLPFTYMAFEVDNDSFPGAIEGLKALKMRGTGVSMPNKQLACEYVDELTPAAKLVGAINTIVNDDGYLRGYNTDGTGHIRAIKESGFDIKGKTMVLLGAGGASTAIGAQGAIEGLKEIKLFNRRDEFFDKALAFAQRVNENTDCVVTVTDLADQQAFAEALASADILTNGTKVGMKPLENESLVNDISLLHPGLLVTECVYNPHMTKLLQQAQQAGCKTIDGYGMLLWQGAEQFTLWTGKDFPLEYVKQVMGFGA UniProt: Quinate/shikimate dehydrogenase.
12 -> 94 LMAYPIRHSLSPEMQNKALEKAGLPFTYMAFEVDNDSFPGAIEGLKALKMRGTGVSMPNKQLACEYVDELTPAAKLVGAINTI
22 -> 22 S UniProt: Kinetically unchanged as compared with the wild-type..
39 -> 39 Y UniProt: Kinetically unchanged as compared with the wild-type..
67 -> 67 S UniProt: Reduces activity towards quinate about 6-fold, but has a little effect on shikimate conversion..

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.5 - biosynthesis of building blocks --> 1.5.1 - amino acids --> 1.5.1.20 - chorismate
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0005515 - protein binding
GO:0016491 - oxidoreductase activity
GO:0004764 - shikimate 3-dehydrogenase (NADP+) activity
GO:0030266 - quinate 3-dehydrogenase (NAD+) activity
GO:0042803 - protein homodimerization activity
GO:0052733 - quinate 3-dehydrogenase (NADP+) activity
GO:0052734 - shikimate 3-dehydrogenase (NAD+) activity
biological_process GO:0008652 - cellular amino acid biosynthetic process
GO:0009073 - aromatic amino acid family biosynthetic process
GO:0009423 - chorismate biosynthetic process
GO:0019632 - shikimate metabolic process
Note(s): Note(s): ...[more].
Reference(s): [1] Chen K., et al., 2012
[2] Chen X., et al., 2014
[3] Li M., et al., 2013
[4] Li S., et al., 2020
[5] Lutke-Eversloh T., et al., 2008
[6] Martinez JA., et al., 2015
External database links:  
ALPHAFOLD:
P0A6D5
DIP:
DIP-47967N
ECOCYC:
EG11234-MONOMER
ECOLIWIKI:
b1692
INTERPRO:
IPR036291
INTERPRO:
IPR041121
INTERPRO:
IPR022893
INTERPRO:
IPR022872
INTERPRO:
IPR013708
MODBASE:
P0A6D5
PDB:
1O9B
PDB:
1NPD
PDB:
1VI2
PFAM:
PF08501
PFAM:
PF18317
PRIDE:
P0A6D5
REFSEQ:
NP_416207
SMR:
P0A6D5
UNIPROT:
P0A6D5


Operon      
Name: ydiNB-aroD         
Operon arrangement:
Transcription unit        Promoter
aroD
ydiNB-aroD


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References


Reference(s)    

 [1] Chen K., Dou J., Tang S., Yang Y., Wang H., Fang H., Zhou C., 2012, Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli., Bioresour Technol 119:141-7

 [2] Chen X., Li M., Zhou L., Shen W., Algasan G., Fan Y., Wang Z., 2014, Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose., Bioresour Technol 166:64-71

 [3] Li M., Chen X., Zhou L., Shen W., Fan Y., Wang Z., 2013, [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering]., Sheng Wu Gong Cheng Xue Bao 29(1):56-67

 [4] Li S., Jendresen CB., Landberg J., Pedersen LE., Sonnenschein N., Jensen SI., Nielsen AT., 2020, Genome-Wide CRISPRi-Based Identification of Targets for Decoupling Growth from Production., ACS Synth Biol 9(5):1030-1040

 [5] Lutke-Eversloh T., Stephanopoulos G., 2008, Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression., Metab Eng 10(2):69-77

 [6] Martinez JA., Bolivar F., Escalante A., 2015, Shikimic Acid Production in Escherichia coli: From Classical Metabolic Engineering Strategies to Omics Applied to Improve Its Production., Front Bioeng Biotechnol 3:145


RegulonDB