RegulonDB RegulonDB 10.9: Gene Form
   

waaQ gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

waaG waaQ waaP rirA Cis-reg rirAp rirAp waaQp waaQp TSS_4211 TSS_4211

Gene      
Name: waaQ    Texpresso search in the literature
Synonym(s): ECK3622, EG11341, b3632, rfaQ
Genome position(nucleotides): 3807064 <-- 3808098 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
44.64
External database links:  
ASAP:
ABE-0011870
CGSC:
33801
ECHOBASE:
EB1317
ECOLIHUB:
rfaQ
NCBI-GENE:
948155
OU-MICROARRAY:
b3632
STRING:
511145.b3632
COLOMBOS: waaQ


Product      
Name: lipopolysaccharide core heptosyltransferase 3
Synonym(s): HepIII, RfaQ, WaaQ, lipopolysaccharide core heptosyltransferase III
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 38.731
Isoelectric point: 7.322
Motif(s):
 
Type Positions Sequence
65 -> 314 LSLIKTLRANNYDLVINLTDQWMVALLVRCLPARMKISQLYGHRQHGIWKKSFTHLAPIHGTHIVERNLSVLEPLGITDFYTDTTMSYAEDCWKKMRRELDALGVKDHYVVIQPTARQIFKCWDNDKFSKVIDALQQRGYQVVLTCGPSADDLACVDEIARGCETKPITGLAGKTRFPELGALIDHAVLFIGVDSAPGHIAAAVKTPVISLFGATDHVFWRPWTENIIQFWAGNYQKMPTRHELDRNKKY

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.6 - biosynthesis of macromolecules (cellular constituents) --> 1.6.3 - lipopolysaccharide --> 1.6.3.2 - core region
  6 - cell structure --> 6.3 - surface antigens (ECA, O antigen of LPS)
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0016757 - transferase activity, transferring glycosyl groups
GO:0016740 - transferase activity
GO:0008713 - ADP-heptose-lipopolysaccharide heptosyltransferase activity
GO:0071967 - lipopolysaccharide core heptosyltransferase activity
biological_process GO:0009103 - lipopolysaccharide biosynthetic process
GO:0009244 - lipopolysaccharide core region biosynthetic process
Note(s): Note(s): ...[more].
Reference(s): [1] Corsaro MM., et al., 2009
[2] De Spiegeleer P., et al., 2005
[3] Klena JD., et al., 1992
[4] Parker CT., et al., 1992
[5] Pilipcinec E., et al., 1994
[6] Pradel E., et al., 1991
[7] Qiu X., et al., 2015
[8] Qiu XF., et al., 2013
[9] Roncero C., et al., 1992
[10] Schnaitman CA., et al., 1991
External database links:  
CAZY:
GT9
DIP:
DIP-10675N
ECOCYC:
EG11341-MONOMER
ECOLIWIKI:
b3632
INTERPRO:
IPR002201
INTERPRO:
IPR011916
MODBASE:
P25742
PFAM:
PF01075
PRIDE:
P25742
PRODB:
PRO_000023725
REFSEQ:
NP_418089
SMR:
P25742
UNIPROT:
P25742


Operon      
Name: rirA-waaQGPSBOJYZU         
Operon arrangement:
Transcription unit        Promoter
rfaYZ
rfaQGPSBIJYZ-waaU
rirA-rfaQGPSBIJYZ-waaU
rfaZ-waaU


RNA cis-regulatory element    
   
Cis-reg JUMPstart RNA
   
   


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_4211 3807069 reverse nd [RS-EPT-CBR] [11]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Corsaro MM., Parrilli E., Lanzetta R., Naldi T., Pieretti G., Lindner B., Carpentieri A., Parrilli M., Tutino ML., 2009, The presence of OMP inclusion bodies in a Escherichia coli K-12 mutated strain is not related to lipopolysaccharide structure., J Biochem 146(2):231-40

 [2] De Spiegeleer P., Vanoirbeek K., Lietaert A., Sermon J., Aertsen A., Michiels CW., 2005, Investigation into the resistance of lactoperoxidase tolerant Escherichia coli mutants to different forms of oxidative stress., FEMS Microbiol Lett 252(2):315-9

 [3] Klena JD., Ashford RS., Schnaitman CA., 1992, Role of Escherichia coli K-12 rfa genes and the rfp gene of Shigella dysenteriae 1 in generation of lipopolysaccharide core heterogeneity and attachment of O antigen., J Bacteriol 174(22):7297-307

 [4] Parker CT., Kloser AW., Schnaitman CA., Stein MA., Gottesman S., Gibson BW., 1992, Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12., J Bacteriol 174(8):2525-38

 [5] Pilipcinec E., Huisman TT., Willemsen PT., Appelmelk BJ., de Graaf FK., Oudega B., 1994, Identification by Tn10 transposon mutagenesis of host factors involved in the biosynthesis of K99 fimbriae of Escherichia coli: effect of LPS core mutations., FEMS Microbiol Lett 123(1-2):201-6

 [6] Pradel E., Schnaitman CA., 1991, Effect of rfaH (sfrB) and temperature on expression of rfa genes of Escherichia coli K-12., J Bacteriol 173(20):6428-31

 [7] Qiu X., Shen W., Wang X., Qin W., Sun B., 2015, A novel strategy for antimicrobial agent: role of exogenous carbon monoxide on suppressing Escherichia coli vitality and toxicity., Pak J Pharm Sci 28(1 Suppl):281-92

 [8] Qiu XF., Liu DD., Sun BW., Liang F., Cao J., 2013, [Effects of exogenous carbon monoxide-releasing molecules 2 on the vitality and toxicity of E.coli]., Zhonghua Shao Shang Za Zhi 29(2):152-7

 [9] Roncero C., Casadaban MJ., 1992, Genetic analysis of the genes involved in synthesis of the lipopolysaccharide core in Escherichia coli K-12: three operons in the rfa locus., J Bacteriol 174(10):3250-60

 [10] Schnaitman CA., Parker CT., Klena JD., Pradel EL., Pearson NB., Sanderson KE., MacClachlan PR., 1991, Physical maps of the rfa loci of Escherichia coli K-12 and Salmonella typhimurium., J Bacteriol 173(23):7410-1

 [11] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB