RegulonDB RegulonDB 10.9: Gene Form
   

sufS gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

sufD sufS sufC sufE sufEp3 sufEp3 ynhGp4 ynhGp4 ynhGp7 ynhGp7

Gene      
Name: sufS    Texpresso search in the literature
Synonym(s): ECK1676, G6906, b1680, csdB, ynhB
Genome position(nucleotides): 1759303 <-- 1760523 Genome Browser
Strand: reverse
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
54.87
External database links:  
ASAP:
ABE-0005610
ECHOBASE:
EB3720
ECOLIHUB:
sufS
ECOO157CYC:
Z2708
OU-MICROARRAY:
b1680
STRING:
511145.b1680
COLOMBOS: sufS


Product      
Name: L-cysteine desulfurase
Synonym(s): CsdB, SufS, YnhB
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 44.434
Isoelectric point: 6.326
Motif(s):
 
Type Positions Sequence
26 -> 394 YLDSAASAQKPSQVIDAEAEFYRHGYAAVHRGIHTLSAQATEKMENVRKRASLFINARSAEELVFVRGTTEGINLVANSWGNSNVRAGDNIIISQMEHHANIVPWQMLCARVGAELRVIPLNPDGTLQLETLPTLFDEKTRLLAITHVSNVLGTENPLAEMITLAHQHGAKVLVDGAQAVMHHPVDVQALDCDFYVFSGHKLYGPTGIGILYVKEALLQEMPPWEGGGSMIATVSLSEGTTWTKAPWRFEAGTPNTGGIIGLGAALEYVSALGLNNIAEYEQNLMHYALSQLESVPDLTLYGPQNRLGVIAFNLGKHHAYDVGSFLDNYGIAVRTGHHCAMPLMAYYNVPAMCRASLAMYNTHEEVDRL
123 -> 123 H
379 -> 379 R
364 -> 364 C
55 -> 55 H

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.8 - metabolism of other compounds --> 1.8.2 - sulfur metabolism
Gene Ontology Terms (GO)  
cellular_component GO:0005737 - cytoplasm
GO:0005829 - cytosol
molecular_function GO:0003824 - catalytic activity
GO:0005515 - protein binding
GO:0016740 - transferase activity
GO:0016829 - lyase activity
GO:0009000 - selenocysteine lyase activity
GO:0031071 - cysteine desulfurase activity
GO:0030170 - pyridoxal phosphate binding
GO:0042803 - protein homodimerization activity
biological_process GO:0006790 - sulfur compound metabolic process
GO:0006534 - cysteine metabolic process
GO:0016226 - iron-sulfur cluster assembly
GO:0001887 - selenium compound metabolic process
GO:0031162 - sulfur incorporation into metallo-sulfur cluster
Note(s): Note(s): ...[more].
Reference(s): [1] Bolstad HM., et al., 2010
[2] Dai Y., et al., 2015
[3] Kim S., et al., 2013
[4] Lee J., et al., 2010
[5] Mihara H., et al., 2002
[6] Prabhakar R., et al., 2005
[7] Rojas DM., et al., 2005
[8] Tokumoto U., et al., 2004
External database links:  
DIP:
DIP-9324N
ECOCYC:
G6906-MONOMER
ECOLIWIKI:
b1680
INTERPRO:
IPR020578
INTERPRO:
IPR015422
INTERPRO:
IPR015424
INTERPRO:
IPR000192
INTERPRO:
IPR010970
INTERPRO:
IPR015421
MODBASE:
P77444
PDB:
1JF9
PDB:
6UY5
PDB:
6O13
PDB:
6O12
PDB:
6O11
PDB:
6O10
PDB:
1C0N
PDB:
1I29
PDB:
1KMJ
PDB:
1KMK
PDB:
5DB5
PDB:
6MR2
PDB:
6MR6
PDB:
6MRE
PDB:
6MRH
PDB:
6MRI
PFAM:
PF00266
PRIDE:
P77444
PROSITE:
PS00595
REFSEQ:
NP_416195
SMR:
P77444
UNIPROT:
P77444


Operon      
Name: sufABCDSE         
Operon arrangement:
Transcription unit        Promoter
sufABCDSE


Transcriptional Regulation      
Display Regulation             
Activated by: IHF, IscR, OxyR
Repressed by: NsrR, Fur


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter ynhGp7 1758944 reverse Similarity to the consensus
Read more >
[ICWHO] [9]
  promoter ynhGp4 1758945 reverse Similarity to the consensus
Read more >
[ICWHO] [9]
  promoter sufEp3 1759481 reverse Similarity to the consensus
Read more >
[ICWHO] [9]


Evidence    

 [ICWHO] Inferred computationally without human oversight



Reference(s)    

 [1] Bolstad HM., Wood MJ., 2010, An in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli., J Proteome Res 9(12):6740-51

 [2] Dai Y., Kim D., Dong G., Busenlehner LS., Frantom PA., Outten FW., 2015, SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase., Biochemistry 54(31):4824-33

 [3] Kim S., Park S., 2013, Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration., J Biol Chem 288(38):27172-80

 [4] Lee J., Hiibel SR., Reardon KF., Wood TK., 2010, Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene., J Appl Microbiol 108(6):2088-102

 [5] Mihara H., Kato S., Lacourciere GM., Stadtman TC., Kennedy RA., Kurihara T., Tokumoto U., Takahashi Y., Esaki N., 2002, The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H., Proc Natl Acad Sci U S A 99(10):6679-83

 [6] Prabhakar R., Morokuma K., Musaev DG., 2005, A comparative study of various computational approaches in calculating the structure of pyridoxal 5'-phosphate (PLP)-dependent beta-lyase protein. The importance of protein environment., J Comput Chem 26(5):443-6

 [7] Rojas DM., Vasquez CC., 2005, Sensitivity to potassium tellurite of Escherichia coli cells deficient in CSD, CsdB and IscS cysteine desulfurases., Res Microbiol 156(4):465-71

 [8] Tokumoto U., Kitamura S., Fukuyama K., Takahashi Y., 2004, Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori., J Biochem (Tokyo) 136(2):199-209

 [9] Huerta AM., Collado-Vides J., 2003, Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals., J Mol Biol 333(2):261-78


RegulonDB