RegulonDB RegulonDB 10.8: Gene Form
   

mhpF gene in Escherichia coli K-12 genome


Gene local context to scale (view description)

mhpT mhpE mhpF mhpC mhpD NsrR mhpTp mhpTp TSS_484 TSS_484

Gene      
Name: mhpF    Texpresso search in the literature
Synonym(s): ECK0348, M014, b0351
Genome position(nucleotides): 372921 --> 373871 Genome Browser
Strand: forward
Sequence: Get nucleotide sequence FastaFormat
GC content %:  
54.47
External database links:  
ASAP:
ABE-0001207
ECHOBASE:
EB3390
OU-MICROARRAY:
b0351
PortEco:
mhpF
STRING:
511145.b0351
COLOMBOS: mhpF


Product      
Name: acetaldehyde dehydrogenase (acetylating) MhpF
Synonym(s): MhpF, acetaldehyde dehydrogenase 2
Sequence: Get amino acid sequence Fasta Format
Cellular location: cytosol
Molecular weight: 33.442
Isoelectric point: 5.194
Motif(s):
 
Type Positions Sequence
5 -> 119 KVAIIGSGNIGTDLMIKILRHGQHLEMAVMVGIDPQSDGLARARRMGVATTHEGVIGLMNMPEFADIDIVFDATSAGAHVKNDAALREAKPDIRLIDLTPAAIGPYCVPVVNLEA
131 -> 284 CGGQATIPMVAAVSRVARVHYAEIIASIASKSAGPGTRANIDEFTETTSRAIEVVGGAAKGKAIIVLNPAEPPLMMRDTVYVLSDEASQDDIEASINEMAEAVQAYVPGYRLKQRVQFEVIPQDKPVNLPGVGQFSGLKTAVWLEVEGAAHYLP
11 -> 14 SGNI
162 -> 170 SAGPGTRAN

 

Classification:
Multifun Terms (GenProtEC)  
  1 - metabolism --> 1.1 - carbon utilization --> 1.1.1 - carbon compounds
Gene Ontology Terms (GO)  
cellular_component GO:0005829 - cytosol
molecular_function GO:0005515 - protein binding
GO:0016491 - oxidoreductase activity
GO:0016620 - oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor
GO:0008774 - acetaldehyde dehydrogenase (acetylating) activity
GO:0051287 - NAD binding
biological_process GO:0019439 - aromatic compound catabolic process
GO:0055114 - oxidation-reduction process
GO:0019380 - 3-phenylpropionate catabolic process
Note(s): Note(s): ...[more].
Reference(s): [1] Guadalupe Medina V., et al., 2010
[2] Guadalupe-Medina V., et al., 2014
[3] Kozak BU., et al., 2014
[4] Ozaki A., et al., 2017
[5] Song JY., et al., 2016
[6] Zhang L., et al., 2013
[7] Zhang L., et al., 2011
External database links:  
DIP:
DIP-10210N
ECOCYC:
MHPF-MONOMER
ECOLIWIKI:
b0351
INTERPRO:
IPR003361
INTERPRO:
IPR000534
INTERPRO:
IPR036291
INTERPRO:
IPR015426
MODBASE:
P77580
PANTHER:
PTHR21123
PFAM:
PF09290
PFAM:
PF01118
PRIDE:
P77580
PRODB:
PRO_000023233
REFSEQ:
NP_414885
SMART:
SM00859
SMR:
P77580
SWISSMODEL:
P77580
UNIPROT:
P77580


Operon      
Name: mhpABCDFE         
Operon arrangement:
Transcription unit        Promoter
mhpABCDFE


Transcriptional Regulation      
Display Regulation             
Activated by: CRP, MhpR


Elements in the selected gene context region unrelated to any object in RegulonDB      

  Type Name Post Left Post Right Strand Notes Evidence (Confirmed, Strong, Weak) References
  promoter TSS_484 374977 forward nd [RS-EPT-CBR] [8]


Evidence    

 [RS-EPT-CBR] RNA-seq using two enrichment strategies for primary transcripts and consistent biological replicates



Reference(s)    

 [1] Guadalupe Medina V., Almering MJ., van Maris AJ., Pronk JT., 2010, Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor., Appl Environ Microbiol 76(1):190-5

 [2] Guadalupe-Medina V., Metz B., Oud B., van Der Graaf CM., Mans R., Pronk JT., van Maris AJ., 2014, Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations., Microb Biotechnol 7(1):44-53

 [3] Kozak BU., van Rossum HM., Benjamin KR., Wu L., Daran JM., Pronk JT., van Maris AJ., 2014, Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis., Metab Eng 21:46-59

 [4] Ozaki A., Konishi R., Otomo C., Kishida M., Takayama S., Matsumoto T., Tanaka T., Kondo A., 2017, Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose., Metab Eng Commun 5:60-67

 [5] Song JY., Park JS., Kang CD., Cho HY., Yang D., Lee S., Cho KM., 2016, Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae., Metab Eng 35:38-45

 [6] Zhang L., Tang Y., Guo Z., Shi G., 2013, Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production., J Ind Microbiol Biotechnol 40(10):1153-60

 [7] Zhang L., Tang Y., Guo ZP., Ding ZY., Shi GY., 2011, Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae., Biotechnol Lett 33(7):1375-80

 [8] Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J., 2012, RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more., Nucleic Acids Res.


RegulonDB